ANALISIS ELASTISITAS HARGA DAN PERAMALAN DINAMIS PADA KOMODITAS TOMAT DI KABUPATEN GARUT, INDONESIA
Abstrak
Abstrak
Fluktuasi harga yang tinggi dan penurunan permintaan konsumsi menjadi tantangan bagi keberlanjutan produksi tomat di Indonesia. Penelitian ini bertujuan untuk menganalisis faktor-faktor yang mempengaruhi harga tomat dan menentukan model proyeksi terbaik komoditas tersebut di Kabupaten Garut, salah satu produsen tertinggi di Jawa Barat. Data sekunder dianalisis menggunakan regresi linier berganda untuk mengidentifikasi elastisitas harga dan faktor-faktor yang berpengaruh dan metode autoregressive integrated moving average (ARIMA) untuk memodelkan peramalan harga dinamis. Hasil penelitian menunjukkan bahwa variabel harga wortel, harga cabai merah, dan harga cabai rawit memiliki pengaruh signifikan terhadap harga tomat pada tingkat signifikansi 5%, sedangkan harga kubis berpengaruh signifikan pada tingkat 10%. Faktor produktivitas tomat, harga wortel, dan populasi memiliki efek positif, sedangkan harga cabai merah dan harga cabai rawit memiliki efek negatif terhadap harga tomat. Pemodelan ARIMA menunjukkan bahwa model terbaik untuk peramalan adalah (1,0) (1,0) dengan nilai AIC sebesar 404,375. Model mampu memproyeksikan harga dengan akurat, didukung oleh uji residual dan white noise dengan nilai p lebih dari 0,05.
Kata kunci: Elastisitas, peramalan, permintaan, regresi, tomat.
Abstract
High price fluctuations and declining consumption demand pose a challenge for the sustainability of tomato production in Indonesia. This study aims to analyze the factors affecting tomato prices and determine the best projection model for the commodity in Garut Regency, one of the highest producers in West Java. Secondary data were analyzed using multiple linear regression to identify price elasticity and influential factors, while autoregressive integrated moving average (ARIMA) method to model dynamic price forecasting. The results showed that the price variables of carrots, red chili, and cayenne pepper had a significant effect on tomato prices at the 5% significance level, while cabbage prices were significant at the 10% level. The factors of tomato productivity, carrot price, and population have a positive effect, while the prices of red chili and cayenne pepper have a negative effect on tomato prices. ARIMA modeling shows that the best model for forecasting is (1,0)(1,0) with an AIC value of 404.375. This model can project prices accurately, supported by residual and white noise tests with a p-value of more than 0.05.
Keywords: Demand, elasticity, forecast, regression, tomato.Teks Lengkap:
134-147Referensi
Ali, M, A,, Kamraju, M,, & Sonaji, D, B, (2023), Unraveling the Factors Behind the Soaring Tomato Prices : A Comprehensive Analysis, 2(2), 85–104
Atkinson, A, C,, Riani, M,, Corbellini, A,, & Scienze, D, (2020), The Box-Cox Transformation : Review and Extensions, 36(2), 239–251,
Badan Pusat Statistik, (2023), Statistik Indonesia 2023, Jakarta: Badan Pusat Statistik
Chicco, D,, Warrens, M, J,, & Jurman, G, (2021), The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation, PeerJ Computer Science, 7, 1–24,
Dasuki, W, C,, & Jaeroni, A, (2020), Faktor-Faktor Yang Mempengaruhi Anomali Pasar Cabai Rawit Di Kota Cirebon, Agricore: Jurnal Agribisnis Dan Sosial Ekonomi Pertanian Unpad, 5(1), 1–13,
Fattah, J,, Ezzine, L,, Aman, Z,, El Moussami, H,, & Lachhab, A, (2018), Forecasting of demand using ARIMA model, International Journal of Engineering Business Management, 10, 1–9,
Gasper, D,, Shah, A,, & Tankha, S, (2019), The Framing of Sustainable Consumption and Production in SDG 12, Global Policy, 10(January), 83–95,
Gould, P, G,, Koehler, A, B,, Ord, J, K,, Snyder, R, D,, Hyndman, R, J,, & Vahid-Araghi, F, (2008), Forecasting time series with multiple seasonal patterns, European Journal of Operational Research, 191(1), 207–222,
Guleria, A,, Singh, P,, & Priscilla, L, (2023), Price Dynamics and Volatility in Tomato Market in India, Agricultural Research Journal, 60(4), 614–620,
Kementerian Pertanian, (2023), Statistik Pertanian 2023, Jakarta: Kementerian Pertanian
Kumar, R, R,, & Baishya, M, (2020), Forecasting of Potato Prices in India : An Application of ARIMA Model, 65(4), 473–479,
Ma, L,, Hu, C,, Lin, R,, & Han, Y, (2018), ARIMA model forecast based on EViews software, IOP Conference Series: Earth and Environmental Science, 208(1),
Mila, F, A,, Noorunnahar, M,, Nahar, A,, Acharjee, D, C,, Parvin, M, T,, & Culas, R, J, (2022), Modelling and Forecasting of Tea Production, Consumption and Export in Bangladesh, Current Applied Science and Technology, 22(2), 1–20,
Morrissey, M, B,, & Ruxton, G, D, (2018), Multiple Regression Is Not Multiple Regressions: The Meaning of Multiple Regression and the Non-Problem of Collinearity, Philosophy, Theory, and Practice in Biology, 10(20220112),
Noviaranti, S, P,, & Zainuddin, A, (2023), Seberapa Elastis Permintaan Bawang Putih Indonesia? Sebuah Analisis Regresi Linier Berganda, Jurnal Ekonomi Pertanian Dan Agribisnis, 7(3), 1022,
Rasidin, R,, Nuddin, A,, & Irmayani, I, (2022), Analisis Permintaan Komoditi Cabai Merah Di Kabupaten Sidenreng Rappang, Plantklopedia: Jurnal Sains Dan Teknologi Pertanian, 2(2), 41–55,
Saptana, Sukmaya, S, G,, Perwita, A, D,, Malihah, F, D,, Wardhana, I, W,, Pitaloka, A, D,, Ghaisani, S, A,, Sayaka, B,, Ilham, N,, Karmawati, E,, Ariani, M,, Susilowati, S, H,, Sumaryanto, & Saliem, H, P, (2023),
Competitiveness analysis of fresh tomatoes in Indonesia: Turning comparative advantage into competitive advantage, Plos One, 18(11 November), 1–29,
Sembiring, D, B,, Sitanggang, I, R,, Nababan, O,, & Frisnoiry, S, (2023), Elastisitas Permintaan Beras dalam Toko, Jurnal Ilmiah Multi Disiplin Indonesia, 2(8), 1850–1858,
Tabe-Ojong, M, P,, Molua, E, L,, Nzie, J, R, M,, & Fuh, G, L, (2020), Production and supply of tomato in Cameroon: Examination of the comparative effect of price and non-price factors, Scientific African, 10(October), e00574,
Taribila, P, N, (2021), Analisis Permintaan Komoditi Jagung Di Kabupaten Timor Tengah Selatan, Jurnal Excellentia, 10(2), 194–206,
Ulinnuha, M,, M Afendi, F,, & Sumertajaya, I, M, (2022), Study of Clustering Time Series Forecasting Model for Provincial Grouping in Indonesia Based on Rice Price, Indonesian Journal of Statistics and Its Applications, 6(1), 50–62,
DOI: https://doi.org/10.24198/agricore.v9i2.59601
Refbacks
- Saat ini tidak ada refbacks.
##submission.copyrightStatement##