PERAMALAN PRODUKSI GULA TEBU DI INDONESIA MENGGUNAKAN MODEL HYBRID SARIMA (SARIMA-ANN) DALAM MENGUKUR CAPAIAN SWASEMBADA GULA 2025

Kadek Dody Kusuma Hermawan, Arista Ika Cahyarani, Tiara Khorijah Hamid Siregar, Fitri Kartiasih

Abstrak


Abstrak

Gula merupakan salah satu barang hasil industri yang termasuk kebutuhan esensial bagi masyarakat Indonesia. Penelitian ini bertujuan untuk menentukan model terbaik dalam meramalkan produksi gula di Indonesia, sekaligus meramalkan pencapaian swasembada gula nasional pada tahun 2025. Penelitian ini menggunakan data bulanan produksi gula di Indonesia dari periode Januari 2014 sampai Desember 2023, yang bersumber dari Badan Pusat Statistik. Data tersebut dimodelkan dengan model SARIMA (Seasonal Autoregressive Integrated Moving Average) dan hybrid SARIMA (gabungan Seasonal Autoregressive Integrated Moving Average dengan Artificial Neural Network) untuk menentukan model terbaik. Kedua model tersebut dapat memodelkan produksi gula di Indonesia yang memiliki pola musiman kuat. Namun, model hybrid SARIMA menghasilkan akurasi peramalan yang lebih baik dibandingkan model SARIMA. Oleh karena itu, model terbaik yang digunakan untuk meramalkan produksi gula di Indonesia adalah model hybrid SARIMA. Hasil peramalan dengan model tersebut pada dua tahun ke depan menunjukkan bahwa produksi gula nasional mengalami stagnan, sehingga belum mampu mencapai swasembada gula nasional pada tahun 2025.

Kata kunci: Produksi gula, swasembada gula, SARIMA, hybrid SARIMA.

Abstract

Sugar is one of the industrial goods that are essential to the Indonesian people. This study aims to determine the best model for forecasting sugar production in Indonesia and to assess the achievement of national sugar self-sufficiency by 2025. The study uses monthly data on sugar production in Indonesia from January 2014 to December 2023, sourced from Statistics Indonesia. The data were modeled using SARIMA (Seasonal Autoregressive Integrated Moving Average) and hybrid SARIMA models (a combination of SARIMA and Artificial Neural Network) to identify the best model. Both models were capable of capturing the strong seasonal pattern of sugar production in Indonesia. However, the hybrid SARIMA model produces better forecasting accuracy than the SARIMA model. Therefore, the hybrid SARIMA model was selected as the best model for forecasting sugar production in Indonesia. Forecast results for the next two years indicate stagnation in national sugar production, suggesting that Indonesia is unable to achieve sugar self-sufficiency by 2025.

Keywords: Sugar production, sugar self-sufficiency, SARIMA, hybrid SARIMA.


Teks Lengkap:

Hal. 132-149

Referensi


Andreyanto, F. M., & Wahyuni, H. C. (2024). Prakiraan produksi gula penyulingan: Menganalisis teknik peramalan untuk ketepatan operasional. Procedia of Engineering and Life Science, 7, 620–627. https://doi.org/10.21070/pels.v7i0.1558

Anggraeni, W., Mahananto, F., Sari, A. Q., Zaini, Z., Andri, K. B., & Sumaryanto. (2019). Forecasting the price of Indonesia’s rice using hybrid artificial neural network and autoregressive integrated moving average (hybrid NNS-ARIMAX) with exogenous variables. Procedia Computer Science, 161, 677–686. https://doi.org/10.1016/j.procs.2019.11.171

Apriawan, C. D., Irham, & Mulyo, H. J. (2015). Analisis produksi tebu dan gula di PT. Perkebunan Nusantara VII (persero). Agro Ekonomi, 26(2), 159–167. https://doi.org/10.22146/agroekonomi.17268

Badan Pusat Statistik. (2024). Statistik tebu Indonesia 2023. Jakarta: Badan Pusat Statistik.

Erkekoglu, H., Garang, A. P. M., & Deng, A. S. (2020). Comparative evaluation of forecast accuracies for ARIMA, exponential smoothing and VAR. International Journal of Economics and Financial Issues, 10(6), 206–216. https://doi.org/10.32479/ijefi.9020

Heryanto, M. A., & Suryatmana, E. R. (2020). Dinamika agroindustri gula Indonesia: Tinjauan analisis sistem. Jurnal Agribisnis Dan Sosial Ekonomi Pertanian UNPAD, 5(2), 194–210. https://doi.org/10.24198/agricore.v5i2.32100

Innayah, N. A., Sulistiana, I. D., Febrian, Y. M., & Kartiasih, F. (2024). Utilizing the SARIMA model and support vector regression to forecast monthly rainfall in Bandung City. Jurnal Ilmiah Teknologi Informasi Terapan, 10(2), 88–104. https://doi.org/10.33197/jitter.vol10.iss2.2024.1663

Kementerian Pertanian. (2024). Analisis kinerja perdagangan gula. Jakarta: Kementerian Pertanian.

Khandelwal, I., Adhikari, R., & Verma, G. (2015). Time series forecasting using hybrid ARIMA and ANN models based on DWT Decomposition. Procedia Computer Science, 48(C), 173–179. https://doi.org/10.1016/j.procs.2015.04.167

Ma, P., Zhang, N., Yang, Y., Wang, Z., Li, G., & Fu, Z. (2024). Forecast of sugarcane yield in Chongzuo, Guangxi—LSTM model based on fusion of trend yield and meteorological yield. Agronomy, 14(11), 1–22. https://doi.org/10.3390/agronomy14112512

Mishra, P., Alakkari, K. M., Lama, A., Ray, S., Singh, M., Shoko, C., Abotaleb, M., Al Khatib, A. M. G., & Karakaya, K. (2023). Modeling and forecasting of sugarcane production in South Asian Countries. Current Applied Science and Technology, 23(1), 1–15. https://doi.org/10.55003/cast.2022.01.23.002

Mwanga, D., Ong’ala, J., & Orwa, G. O. (2017). Modeling sugarcane yields in the Kenya sugar industry: A SARIMA model forecasting approach. International Journal of Statistics and Applications, 7(6), 280–288. https://doi.org/10.5923/j.statistics.20170706.02

Nurhayati, S. S., Khasanah, A. F., Revanadillaa, D. A., Herindra, T. B., & Kartiasih, F. (2024). Prediksi pemanasan global di Provinsi Kalimantan Timur menggunakan SARIMAX dan Neural Network. Jurnal Sistem Dan Teknologi Informasi, 12(3), 394–404. https://doi.org/10.26418/justin.v12i3.74946

Peraturan Presiden No. 40 Tahun 2023 Tentang Percepatan Swasembada Gula Nasional Dan Penyediaan Bioetanol Sebagai Bahan Bakar Nabati (Biofuel), Sekretariat Negara (2023).

Peraturan Presiden No. 59 Tahun 2020 Tentang Perubahan Atas Peraturan Presiden No. 71 Tahun 2015 Tentang Penetapan Dan Penyimpanan Barang Kebutuhan Pokok Dan Barang Penting, Sekretariat Negara (2020).

Puspitosari, R. R., & Surono, S. (2020). Analisis faktor – faktor yang mempengaruhi konsumsi dan produksi gula menuju swasembada gula 2019. Jurnal Kebijakan Ekonomi, 15(2), 1–14. https://doi.org/10.24036/student.v2i1.76

Putra, J. A., Bukhori, S., & Basbeth, F. (2019). Sugar production forecasting system in PTPN XI Semboro Jember using autoregressive integrated moving average (ARIMA) method. EECSI, 448–453. https://doi.org/10.11591/eecsi.v6i0.1988

Safrida, Sofyan, & Taufani, A. (2020). Dampak impor gula terhadap produksi tebu dan harga gula domestik di Indonesia. Jurnal Agribisnis Dan Sosial Ekonomi Pertanian UNPAD, 5(1), 35–48. https://doi.org/10.24198/agricore.v5i1.24850

Sembiring, S. M. Br. B., & Widyastutik. (2023). Simulasi kebijakan produksi dan perdagangan Indonesia terhadap industri gula domestik. Risalah Kebijakan Pertanian Dan Lingkungan, 10(2), 62–74. https://doi.org/10.29244/jkebijakan.v10i2.48375

Sulaiman, A. A., Arsyad, M., Amiruddin, A., Teshome, T. T., & Nishanta, B. (2023). New trends of sugarcane cultivation systems toward sugar production on the free market: A review. Journal of Agricultural Science, 45(2), 395–406. https://doi.org/10.17503/agrivita.v45i2.4066

Sulaiman, A. A., Simatupang, P., Kariyasa, I. K., Subagyono, K., Las, I., Jamal, E., Hermanto, Syahyuti, Sumaryanto, & Suwandi. (2018). Sukses swasembada Indonesia menjadi lumbung pangan dunia 2045 (2nd ed.). Jakarta: IAARD Press.

Tayib, S. A. M., Nor, S. R. M., & Norrulashikin, S. M. (2021). Forecasting on the crude palm oil production in Malaysia using SARIMA Model. Journal of Physics: Conference Series, 1988(1), 1–11. https://doi.org/10.1088/1742-6596/1988/1/012106

Tokan, F. L., & Hermawan, A. (2023). Implementasi model SARIMA untuk memprediksi produksi minyak kelapa sawit. Jurnal Fasilkom, 13(3), 456–463. https://doi.org/10.37859/jf.v13i3.6033

Wang, W., & Lu, Y. (2018). Analysis of the mean absolute error (MAE) and the root mean square error (RMSE) in assessing rounding model. IOP Conference Series: Materials Science and Engineering, 324(1), 1–10. https://doi.org/10.1088/1757-899X/324/1/012049

Yasmin, S., & Moniruzzaman, M. (2024). Forecasting of area, production, and yield of jute in Bangladesh using Box-Jenkins ARIMA model. Journal of Agriculture and Food Research, 16, 1–14. https://doi.org/10.1016/j.jafr.2024.101203

Yunitasari, D., Hakim, Budiman D., Juanda, B., & Nurmalina, R. (2015). Menuju swasembada gula nasional: Model kebijakan untuk meningkatkan produksi gula dan pendapatan petani tebu di Jawa Timur. Jurnal Ekonomi Dan Kebijakan Publik, 6(1), 1–15. http://dx.doi.org/10.22212/jekp.v6i1.160




DOI: https://doi.org/10.24198/agricore.v10i1.62470

Refbacks

  • Saat ini tidak ada refbacks.


##submission.copyrightStatement##