Efek Formulasi Andrometa terhadap *Leptocorisa acuta* Thunberg

Dian Ekawati Sari^{1*}, Fitrianti², dan Bakhtiar³

¹Program Studi Agroteknologi, Universitas Muhammadiyah Sinjai, Sinjai, Sulawesi Selatan Jl. Teuku Umar No. 8 Biringere, Sinjai Utara, Kab. Sinjai 92611

²Program Studi Agroteknologi, Universitas Al Asyariah Mandar, Sulawesi Barat

³Balai Proteksi Tanaman Pangan dan Hortikultura, Maros, Sulawesi Selatan

*Alamat korespondensi: dianekawatisari@rocketmail.com

INFO ARTIKEL

ABSTRACT/ABSTRAK

Diterima: 29-07-2022 Direvisi: 09-12-2022 Dipublikasi:30-04-2023

Keywords:
Androphagus
paniculata,
Entomopathogen,
Extract, Formulation,
Green chiretta,

Metarhizium anisopliae

Effect of Andrometa Formulation against Leptocorisa acuta Thunberg

Leptocorisa acuta attacks rice plants in the generative phase by sucking the grains until they become empty. Leptocorisa acuta attacks can affect the quality of grain and rice and can even reduce rice crop production. Several control methods have been carried out by farmers, including the use of chemical pesticides. Nevertheless, the use of chemical pesticides among farmers tends to increase the dose and frequency of application. Based on this, environmentally friendly alternative controls are needed to control L. acuta. One of the environmentally friendly controls is the use of plant extracts of Andropahgus paniculata (green chiretta) combined with the entomopathogenic fungus Metarhizium anisopliae to quickly control L. acuta. Both pest control agents were made in one formulation called Andrometa. This study aimed to determine the effect of Andrometa formulation on *L. acuta* on rice plants. This study consisted of five treatments of Andrometa formulation of Formulation 1 (2 g *A. paniculata* extact + 5 g *M. Anisopliae*), Formulation 2 (3 g *A. paniculata* extract + 7,5 g *M. Anisopliae*), Formulation 3 (4 g *A. paniculata* extract + 10 g *M. Anisopliae*), Formulation 4 (5 g *A. paniculata* extract + 12,5 g *M. Anisopliae*), and Formulation 5 (6 g A. paniculata extract + 15 g M. Anisopliae) and one control treatment. The results showed that all treatments with Andrometa formulation were effective in killing *L. acuta* and the number of days required for the formulation to kill L. acuta with the best was found in Formulation 5 for 3 days after application.

Kata Kunci:
Androphagus
paniculata, Ekstrak,
Entomopatogen,
Formulasi,
Metarhizium
anisopliae, Sambiloto

Leptocorisa acuta menyerang tanaman padi pada fase generatif dengan cara mengisap bulir hingga menjadi hampa. Serangan L. acuta dapat memengaruhi kualiatas gabah dan beras bahkan dapat menurunkan produksi tanaman padi. Beberapa metode pengendalian telah dilakukan oleh petani, antara lain penggunaan pestisida kimia. Namun demikian, penggunaan pestisida sintetik di kalangan petani cenderung menambah dosis dan frekuensi aplikasi yang lebih banyak. Berdasarkan hal tersebut maka dibutuhkan alternatif pengendalian yang ramah lingkungan untuk pengendalian hama tersebut. Salah satu pengendalian yang ramah lingkungan yaitu pemanfaatan ekstrak tanaman Andropahgus paniculata (sambiloto) dan cendawan entomopatogen Metarhizium anisopliae yang bertujuan agar dapat bereaksi cepat dalam mengendalikan L. acuta. Kedua agen pengendali hama tersebut dibuat dalam satu formulasi yang disebut Andrometa. Penelitian ini bertujuan untuk mengetahui pengaruh formulasi Andrometa terhadap hama L. acuta pada tanaman padi. Penelitian ini terdiri atas lima perlakuan formulasi Andrometa yaitu Formulasi 1 (2 g ekstrak *A. paniculata* + 5 g biakan massal *M. Anisopliae*), Formulasi 2 (3 g ekstrak *A. paniculata* + 7,5 g biakan massal *M. Anisopliae*), Formulasi 3 (4 g ekstrak *A. paniculata* + 10 g biakan massal *M. Anisopliae*), Formulasi 4 (5 g ekstrak *A. paniculata* + 12,5 g biakan massal *M. Anisopliae*), dan Formulasi 5 (6 g ekstrak *A. paniculata* + 15 g biakan massal *M. Anisopliae*) serta satu perlakuan kontrol. Hasil penelitian menunjukkan bahwa semua perlakuan dengan formulasi Andrometa efektif dalam membunuh *L. acuta* dan jumlah hari yang dibutuhkan formulasi dalam mematikan *L. acuta* yang terbaik didapatkan pada Formulasi 5 yaitu 3 hari setelah aplikasi.

PENDAHULUAN

Salah satu organisme pengganggu tanaman utama pada tanaman padi yaitu Leptocorisa acuta. Hama ini muncul setiap kali pertanaman padi akan memasuki fase berbunga dan menyerang tanaman dengan cara menusukkan stiletnya ke bulir padi, kemudian cairan bulir tersebut diisap. Akibat serangan L. Acuta, biji bulir padi tidak terisi ataupun hampa sama sekali dan bekas tusukan stilet akan berwarna hitam. Kerusakan yang ditimbulkan ini penurunan kualitas mengakibatkan maupun kuantitas hasil tanaman padi. Pada serangan yang tinggi L. acuta dapat menyebabkan kehilangan hasil hingga mencapai 50% (Kusnanto, 2020). Populasi L. Acuta bisa mencapai 33,9 ekor per luasan 3 m x 3 m dengan intensitas serangan mencapai 98% (Manopo dkk., 2013). Kehilangan hasil akibat serangan L. acuta pada plot yang berukuran 50 cm x 50 cm dapat menurunkan hasil sebesar 15% sedangkan potensi kehilangan hasil akibat serangan L. acuta dengan rentang populasi 2 sampai 8 ekor pada tanaman padi sebesar 25,73% sampai 55,66% (Winarsi dkk., 2018)

Leptocorisa acuta termasuk hama yang sulit dikendalikan dan kehadirannya menyusahkan petani. Pengendalian yang dilakukan petani saat ini masih bergantung pada pestisida sintetik. Di lain pihak, penggunaan pestisida sintetik di kalangan petani tergolong sangat insentif sehingga dapat merusak lingkungan, organisme lain dan petaninya itu sendiri (Sari dkk., 2021). Hasil pengamatan di lapangan petani seringkali meningkatkan dosis yang telah ditentukan serta frekuensi penyemprotannya. Prilaku tersebut dapat menyebabkan pengaruh yang buruk di bidang pertanian karena menyebabkan resistensi hama, resurgensi, dan residu pada produk pertanian. Salah satu alternatif pengendalian yang ramah lingkungan untuk pengendalian hama L. acuta yaitu penggunaan ekstrak tanaman. Namun, pemanfaatan ekstrak tumbuhan memiliki sejumlah kekurangan yaitu daya tahan yang singkat, tidak bereaksi cepat dan relatif lambat membunuh hama dibandingkan dengan pestisida kimia sintetik (Yusuf, 2012). Berdasarkan hal tersebut, maka diperlukan upaya agar pemanfaatan ekstrak tanaman dapat lebih cepat dalam mematikan hama. Adapun cara yang dapat diterapkan yaitu menggabungkan ekstrak tanaman dan cendawan entomopatogen dalam satu formulasi. Salah satu ekstrak tanaman dan cendawan entomopatogen yang dibuat dalam satu formulasi untuk mengendalikan *L. acuta* yaitu formulasi Andrometa.

Andrometa merupakan gabungan kata Andrographis paniculata (sambiloto) dan Metarhizium anisopliae. Formulasi Andrometa ini didapatkan dari campuran ekstrak tanaman A. paniculata dengan cendawan entomopatogen M. anisopliae. Tanaman A. paniculata memiliki kandungan senyawa metabolit sekunder yaitu saponin, terpenoid, alkaloid, flavonoid, steroid, glikosida, fenol dan tanin (Brigitta dkk., 2021). Senyawa metabolit sekunder yang dihasilkan oleh tumbuhan berpotensi dijadikan sebagai agen pengendali hama (Sari dkk., 2021). Selain itu, A. paniculata memiliki kandungan utama yaitu andrograpolide (Tajidin et.al., 2019). Senyawa tersebut yang dapat menyebabkan beberapa efek terhadap hama tanaman. Kandungan kimia yang dimiliki tumbuhan A. paniculata berpotensi dijadikan sebagai insektisida nabati. Beberapa penelitian tentang pemanfaatan ekstrak A. paniculata menunjukkan bahwa ekstrak tersebut berpotensi dalam pengendalian hama tanaman. Ekstrak A. paniculata berpotensi untuk mengendalikan hama Papilio demoleus dengan efek antifeedant pada konsentrasi 200 ppm sebesar 83,60% setelah 24 jam setelah aplikasi (Vattikonda, 2015). Senyawa andrographolide yang terkandung dalam ekstrak A. paniculata efektif terhadap hama Tribolium castaneum dengan efek yang ditimbulkan berupa penghambatan pertumbuhan dan morfogenesis (Lingampally et al., 2013). Hasil penelitian

menunjukkan bahwa senyawa andrographolide berpotensi untuk dikembangkan sebagai penghambat perkembangan hama *Spodoptera litura* (Edwin *et al.*, 2016). *A. paniculata* bersifat insektisidal terhadap serangga hama *Aphis schneideri* pada kosentrasi 16 ml/l hanya memerlukan waktu 36 jam setelah aplikasi untuk mencapai mortalitas 100% (Idris & Nurmansyah, 2016).

Cendawan M. anisopliae merupakan salah cendawan entomopatogen yang sangat berpotensi dalam mengendalikan hama tanaman. Cendawan M. anisopliae dapat menginfeksi beberapa hama tanaman yaitu Nephotetix virescens, L. acuta, Locusta migratory (Ramli & Kusnara, 2019; Salaki & Palealu, 2015; Suryadi & Kadir, 2007; Wongkar et al., 2022). Cendawan M. anisopliae memiliki kelebihan dibandingkan cendawan entomopatogen lain salah satunya adalah bersifat persisten dengan konidia yang mampu bertahan selama 3,5 tahun di dalam tanah (Milner et al., 2003). M. anisopliae efektif dalam menekan populasi Aphis glycines ditunjukkan waktu kematian tercepat dengan hanya membutuhkan waktu 5 hari setelah aplikasi (Widariyanto, 2017). Hasil penelitian Flori dkk. (2020) menunjukkan bahwa aplikasi suspensi M. anisopliae dengan kerapatan konidia 8 x 106/ml efektif membunuh imago Musca domestica dengan mortalitas sebesar 95% dalam waktu rata-rata 5,88 hari. Cendawan Metarhizium spp. efektif terhadap pupa Cricodolomia cramella dengan mortalitas sebesar 96,67% serta menghambat pembentukan imago C. cramerella (Trizelia dkk., 2013). Isolat cendawan M. anisopliae strain JTMa-2 dengan kerapatan konidia 5 x 108 konidia/ml menyebabkan mortalitas pada hama Lepidiota stigma sebesar 91,7% (Indrayani & Ridhawati, 2020). Tujuan penelitian ini untuk menguji pengaruh Andrometa terhadap hama *L. acuta* pada tanaman padi.

BAHAN DAN METODE

Waktu dan Tempat Penelitian

Penelitian ini dilaksanakan pada bulan Desember 2021 sampai Februari 2022 di Laboratorium Terpadu kemudian dilanjutkan di green house Fakultas Pertanian, Universitas Muhammadiyah Sinjai. Penelitian ini menggunakan rancangan acak lengkap (RAL) dan diuji pada 5 taraf formulasi (F) yaitu F1, F2, F3, F4, dan F5 serta perlakuan kontrol yang diulang sebanyak 3 kali. Data yang didapatkan dianalisis menggunakan ANOVA

dalam RAL, jika data menunjukkan berbeda nyata maka dilanjutkan dengan uji BNT.

Persiapan Serangga Uji Penyedian Pakan Serangga Uji

Penyediaan tanaman padi bertujuan untuk pakan serangga pada saat pemeliharaan dan pengujian formulasi terhadap *L. acuta*. Media tanam yang digunakan berupa tanah sawah yang telah dicampur dengan pupuk kandang sebagai sumber zat hara untuk mencukupi kebutuhan nutrisi tanaman. Tanah yang telah tercampur pupuk kandang dipindahkan ke ember berdiameter 30 cm kemudian ditanami padi yang telah berumur 40 hari yang sebelumnnya disemai dan dipelihara dalam areal persawahan.

Pengumpulan dan Pemeliharaan serangga uji

Nimfa *L. acuta* dikumpulkan dari areal pertanaman padi di Kabupaten Bone kemudian dibawa ke laboratorium untuk dilakukan pemeliharaan serangga. Pemeliharaan dilakukan dengan cara nimfa yang telah terkumpul dimasukkan ke dalam kurungan serangga dan diberi pakan berupa tanaman padi yang telah memasuki fase generatif. Nimfa dipelihara sampai berubah menjadi imago *L. acuta*. Serangga uji yang digunakan yaitu fase imago *L. acuta*.

Persiapan Formulasi Andrometa Ekstraksi *A. paniculata*

Ekstraksi dilakukan dengan cara mencuci daun *A. paniculata* dan dikeringanginkan selama 2-3 hari. Daun *A. paniculata* yang telah kering dimasukkan ke dalam stoples sebanyak 500 g dan kemudian ditambahkan metanol sebanyak 2 liter dan dilakukan proses maserasi selama 7 hari. Setelah proses maserasi selesai, ekstrak tersebut disaring menggunakan saringan dengan ukuran 0,5 mm. Hasil saringan dimasukkan ke dalam *water bath* dengan suhu 64 °C yang bertujuan untuk menguapkan pelarut metanol. Proses penguapan berlangsung selama 6-8 jam tiap liternya. Setelah diperoleh ekstrak kasar yang berbentuk pasta, ekstrak tersebut dimasukkan ke dalam wadah kemudian ditutup dengan alumunium foil.

Persiapan Cendawan Entomopatogen

Cendawan entomopatogen *M. anisopliae* yang digunakan dalam penelitian ini merupakan koleksi dari Balai Proteksi Tanaman Pangan dan Hortikultura

Maros, Sulawesi Selatan. Perbanyakan *M. anisopliae* menggunakan media beras. Perbanyakan dilakukan dengan cara menimbang beras sebanyak 100 g kemudian dimasukkan ke dalam plastik anti panas dan disterilkan dalam *autoclave* selama 2 jam. Setelah 2 jam, beras didinginkan terlebih dahulu kemudian cendawan *M. anisopliae* dimasukkan untuk dilakukan perbanyakan. Setelah *M. anisopliae* berkembang dalam media beras, beras dihaluskan menggunakan blender dan *M. anisopliae* siap digunakan.

Pembuatan Formulasi Andrometa

Pembuatan formulasi dilakukan dengan cara menimbang ekstrak *A. paniculata* dan bubuk biakan massal *M. anisopliae* sesuai dengan komposisi masing-masing formulasi kemudian ditambahkan zeolit dan kaolin masing-masing 2 g setiap formulasi. Lima formulasi Andrometa yang diuji adalah Formulasi 1 (2 g ekstrak *A. paniculata* + 5 g biakan massal *M. Anisopliae*), Formulasi 2 (3 g ekstrak *A. paniculata* + 7,5 g biakan massal *M. Anisopliae*), Formulasi 3 (4 g ekstrak *A. paniculata* + 10 g biakan massal *M. Anisopliae*), Formulasi 4 (5 g ekstrak *A. paniculata* + 12,5 g biakan massal *M. Anisopliae*), dan Formulasi 5 (6 g ekstrak *A. paniculata* + 15 g biakan massal *M. Anisopliae*).

Pengujian Formulasi Andrometa

Pengujian formulasi dilakukan dengan metode penyemprotan. Imago *L. acuta* dimasukkan ke dalam kurungan yang telah berisi tanaman padi fase

generatif sebanyak 10 ekor/rumpun. Kemudian 250 formulasi Andrometa sesuai perlakuan disemprotkan ke dalam masing-masing kurungan yang berisi satu rumpun padi dan L. acuta yang sudah diinfestasikan tersebut menggunakan handsprayer. Perlakuan kontrol hanya disemprot dengan aquades. Pengamatan dalam penelitian ini meliputi: 1) mortalitas L. acuta, pengamatan dilakukan dengan menghitung jumlah imago yang mati pada setiap jam pengamatan kemudian ditentukan besarnya persentase mortalitas, dan 2) jumlah hari tumbuhnya cendwan M. anisopliae di permukaan tubuh L. Acuta.

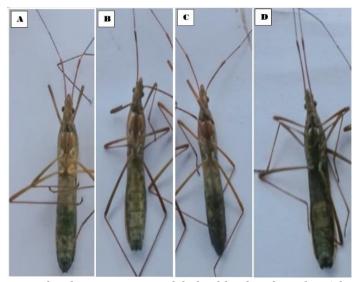
HASIL DAN PEMBAHASAN

Mortalitas L. acuta

Formulasi Andrometa menyebabkan mortalitas mulai pada hari pertama setelah aplikasi yang terjadi pada perlakuan F2, F3, F4 dan F5, sedangkan untuk perlakuan F1 menyebabkan mortalitas pada hari ke-2 setelah aplikasi (Tabel 1). Perlakuan yang paling cepat memperlihatkan mortalitas sebesar 100% yaitu perlakuan F5 pada hari ke-3 setelah aplikasi. Gejala awal yang terlihat pada L. acuta yang mati akibat aplikasi formulasi Adrometa yaitu adanya kolonisasi cendawan M. anisopliae yang dimulai dari bagian abdomen. Bagian abdomen berwarna hijau tua yang muncul pada bagian tengah (Gambar 1A) atau pinggir abdomen (Gambar 1B) kemudian akan menyebar ke seluruh bagian abdomen (Gambar 1C) serta thorax dan kepala (Gambar 1D).

Tabel 1. Rata-rata mortalitas *L. acuta* pada perlakuan formulasi Andrometa

Perlakuan -	Mortalitas (%) pada n JSA			
	24	48	60	72
Kontrol	0 a	0 cd	0 e	0 b
Formulasi 1 (2 g ekstrak A. paniculata + 5 g M. Anisopliae)	0 a	40 c	66,67 d	100 a
Formulasi 2 (3 g ekstrak <i>A. paniculata</i> + 7,5 g <i>M. Anisopliae</i>)	3,33 a	43,33 c	73,33 с	100 a
Formulasi 3 (4 g ekstrak <i>A. paniculata</i> + 10 g <i>M. Anisopliae</i>)	6,67 a	53,33 ab	80 ab	100 a
Formulasi 4 (5 g ekstrak <i>A. paniculata</i> + 12,5 g <i>M. Anisopliae</i>)	6,67 a	66,67 a	93,33 a	100 a
Formulasi 5 (6 g ekstrak <i>A. paniculata</i> + 15 g <i>M. Anisopliae</i>)	26,67 a	73,33 a	100 a	100 a


Keterangan: Angka-angka yang diikuti oleh huruf yang sama pada kolom yang sama tidak berbeda nyata berdasarkan uji Beda Nyata Terkecil (BNT) taraf 0,05. JSA: jam setelah aplikasi.

Formulasi Andrometa efektif terhadap *L. acuta*. Mortalitas *L. acuta* pada semua perlakuan dengan formulasi Andrometa meningkat pada setiap hari pengamatan. Mortalitas terjadi diduga karena adanya senyawa yang bersifat toksik yang terkandung dalam formulasi yaitu senyawa metabolit ekstrak *A. paniculata* berupa andrographolide. Andrographolide

merupakan senyawa alami dari *A. paniculata* yang dapat digunakan untuk mengendalikan hama (Edwin *et al.*, 2021; Vattikonda, 2015). Selain itu, formulasi juga memiliki cendawan entomopatogen *M. anisopliae* memproduksi enzim ekstraseluler yang dapat digunakan untuk merusak bagian tubuh serangga. *M. anisopliae* memiliki enzim berupa

kitinase, lipase, proteinase, amilase, esterase dan pospatase (Nuraida & Hasyim, 2009). Selain itu *M. anisopliae* menghasilkan destruksin yang memiliki

aktivitas insektisida, destruksin dapat melemahkan inangnya karena termasuk dalam racun peptida siklik (Liu *et al.*, 2004).

Gambar 1. Gejala yang muncul pada *L. acuta* yang telah diaplikasikan formulasi Adrometa. Bagian abdomen yang berwarna hijau tua muncul pada bagian (A) tengah, (B dan C) pinggir abdomen kemudian akan menyebar ke seluruh bagian abdomen, serta (D) thorax dan kepala.

Mortalitas terjadi pada pengamatan pertama yaitu 24 jam setelah aplikasi (JSA) dan mencapai 100% pada pengamatan 72 JSA. Mortalitas L. acuta yang terjadi diduga disebabkan oleh kandungan dari formulasi Andrometa yang merupakan kombinasi dari ekstrak A. paniculata dan entomopatogen M. anisopliae, masing-masing keduanya memiliki kandungan yang bersifat mematikan *L. acuta*. Ekstrak A. paniculata memiliki kandungan cyanogenic glycosides yang merupakan metabolit sekunder yang memiliki aktivitas insektisida. senyawa andrographolide yang bersifat antifeedant, larvacida, dan penghambat pertumbuhan sementara M. anisopliae memiliki toksin destruxin yang sangat toksik terhadap serangga (Adekunle & Ayodele, 2014; Edwin et.al., 2016; Park & Coats, 2002). Senyawa yang terkandung dalam andrographolide paniculata dapat menurunkan aktivitas enzim pencernaan serangga yang terjadi pada bagian midgut dengan enzim pencernaan yang dipengaruhi yaitu amilase, invertase, protease dan tripsin (Madihah et al., 2018). Enzim amilase dan invertase memengaruhi asimilasi karbohidrat sedangkan protease protein mengakibatkan memengaruhi yang kekurangan asam amino sehingga menyebabkan kelaparan pada serangga. Dextruksin merupakan toksin yang memengaruhi organ hama sasaran seperti mitokondria, retikulum endoplasma dan membran

nukleus selain itu juga memengaruhi fungsi dari lambung tengah, tubiulus malpighi, jaringan otot dan hemocyt (Tampubolon dkk., 2013).

Serangga uji yang diberi perlakuan formulasi Andrometa memperlihatkan gejala pada bagian abdomen berwarna hijau muda yang dimulai dari bagian tengah abdomen atau bagian pinggir abdomen dan kemudian akan menyebar ke seluruh tubuh L. acuta. Warna hijau muda yang merupakan kolonisasi M. Anisopliae ini akan berubah menjadi hijau tua sesuai dengan spora yang menjadi dewasa sementara tubuh L. acuta kemudian akan mengeras. Cendawan M. anisopliae yang menginfeksi serangga pada awalnya akan membentuk koloni cendawan berwarna putih, seiring dengan berjalannya waktu lama kelamaan cendawan tersebut akan berubah warna menjadi hijau gelap (Prayogo dkk., 2005). Tubuh serangga yang terinfeksi cendawan M. anisopliae mengeras dan berwarna hijau. Hal tersebut terjadi karena jaringan dan cairan tubuh serangga yang terinfeksi habis terserap oleh cendawan M. anisopliae (Indriyanti dkk., 2017).

Rata-rata mortalitas *L. acuta* untuk semua perlakuan formulasi pada pengamatan 72 JSA sebesar 100%. Perbedaan antar perlakuan terlihat pada pengamatan 24, 48 dan 60 JSA. Adanya perbedaan mortalitas disebabkan oleh jumlah dari komposisi formulasi. Formulasi dengan jumlah komposisi yang

kecil akan lambat menyebabkan gejala, semakin tinggi jumlah perbandingan komposisi ekstrak A. paniculata dan cendawan M. anisopliae dalam formulasi maka akan semakin cepat memperlihatkan gejala pada *L. acuta*. Semakin tinggi konsentrasi ekstrak tanaman maka semakin tinggi tingkat keefektifan terhadap serangga hama penggerek biji kopi (Wiryadiputra dkk., 2014). Menurut Gargita dkk. (2017) adanya perbedaan data yang dihasilkan setelah aplikasi cendawan entomopatogen pada hama Helopelthis spp. disebabkan oleh jumlah spora yang terkandung di dalam formulasi, semakin pekat suatu konsentrasi formulasi maka akan semakin banyak spora yang terkandung dan semakin banyak spora maka semakin besar pula kemungkinan Helopeltis konsentrasi M. terinfeksi. Peningkatan spp. anisopliae meningkatkan mortalitas harian larva Oryctes rhinoceros, semakin tinggi konsentrasi semakin tinggi pula mortalitas larva O. rhinoceros.

Konsentrasi yang tinggi mengandung jumlah konidia yang lebih banyak masuk ke dalam tubuh larva *O. rhinoceros* sehingga tingkat infeksinya lebih cepat (Fauzana & Fadillah, 2022).

Kecepatan Kematian Serangga Uji dan Waktu Tumbuh Cendawan

Formulasi Andrometa dari semua konsentrasi yang digunakan dalam penelitian ini efektif terhadap *L. acuta*, dilihat dari kecepatan kematian serangga dan waktu yang dibutuhkan cendawan tumbuh di permukaan tubuh serangga. Hasil penelitian menunjukkan bahwa konsentrasi formulasi sebesar 6% hanya membutuhkan waktu rata-rata 3 hari untuk mematikan *L. acuta* sedangkan waktu yang dibutuhkan cendawan muncul di permukaan tubuh *L. acuta* setelah mati membutuhkan waktu rata-rata hanya 4,33 hari (Tabel 2).

Tabel 2. Rata-rata kecepatan kematian serangga dan waktu tumbuh cendawan *M. anisopliae* di permukaan tubuh *L. Acuta*

Perlakuan	Kecepatan kematian	Waktu tumbuh	
renakuan	(hari)	(hari)	
Kontrol	0 Ь	0 с	
Formulasi 1 (2 g ekstrak A. paniculata + 5 g M. Anisopliae)	4 a	7,33 a	
Formulasi 2 (3 g ekstrak <i>A. paniculata</i> + 7,5 g <i>M. Anisopliae</i>)	4 a	6,33 a	
Formulasi 3 (4 g ekstrak <i>A. paniculata</i> + 10 g <i>M. Anisopliae</i>)	4 a	5,67 ab	
Formulasi 4 (5 g ekstrak <i>A. paniculata</i> + 12,5 g <i>M. Anisopliae</i>)	3,67 ab	5,33 a	
Formulasi 5 (6 g ekstrak <i>A. paniculata</i> + 15 g <i>M. Anisopliae</i>)	3 c	4,33 ab	

menunjukkan Hasil penelitian bahwa semakin tinggi jumlah komposisi dalam formulasi yang digunakan maka semakin cepat dalam membunuh *L. acuta*, sehingga tumbuhnya cendawan di permukaan tubuh L. acuta juga akan semakin cepat. Adanya perbedaan kecepatan kematian serangga pada masing-masing formulasi diduga disebabkan oleh kandungan senyawa kimia yang terkandung dalam ekstrak A. paniculata dan toksin yang diproduksi oleh cendawan M. anisopliae. Adapun senyawa metabolit sekunder yang dikandung ekstrak paniculata andrographolide dan cyanogenic glycosides yang bersifat toksik bagi serangga. Selain itu cendawan M. anisopliae juga memiliki toksin destruksin yang hanya diproduksi oleh genus Metarhizium . Toksin neuromuskular pada cendawan M. anisopliae ini dapat menyebabkan kematian pada serangga yang diinfeksinya (Golo et al., 2014). Perlakuan formulasi Andrometa hanya membutuhkan waktu sekitar 4 hari untuk menyelubungi tubuh *L. acuta*. Hasil ini terjadi karena adanya kerja bersama antara ekstrak *A. paniculata* dan cendawan *M. anisopliae* yaitu senyawa yang terkandung dalam ekstrak *A. paniculata* dapat membunuh atau melemahkan serangga uji sehingga cendawan *M. anisopliae* dapat dengan mudah menginfeksi *L.acuta*. Dengan demikian, dibutuhkan waktu yang cepat untuk hifa *M. anisopliae* dapat menyelubungi tubuh *L. acuta*. Proses perkembangan cendawan entomopatogen dalam tubuh inang sampai inang mati umumnya berjalan sekitar tujuh hari dan setelah tujuh hari inang akan mati sementara cendawan akan membentuk konidia yang akan muncul dari kutikula serangga inang (Septiana, 2015).

SIMPULAN

Formulasi Andrometa efektif terhadap *L. acuta* dengan perlakuan terbaik didapatkan pada

Formulasi 4 (5 g ekstrak *A. paniculata* + 12,5 g *M. Anisopliae*) dan Formulasi 5 (6 g ekstrak *A. paniculata* + 15 g *M. Anisopliae*). Namun demikian, berdasarkan waktu dan mortalitas maka Formulasi 5 yang terbaik yang dapat menyebabkan mortalitas 100% pada pengamatan 60 jam setelah aplikasi dan hanya membutuhkan waktu rata-rata 3 hari dalam mematikan *L. acuta*.

DAFTAR PUSTAKA

- Adekunle, OA, and FT Ayodele. 2014. Insecticidal activity of the aqueous leaves extract of *Andrographis paniculata* as protectant of cowpea seeds from *Callosobruchus maculatus* infestation. Central European Journal of Experimental Biology. 3(1): 29-33.
- Brigitta, P, Fatmawati NND, Budayanti NNS. 2021. Uji aktivitas ekstrak etanol daun sambiloto (*Andrographis paniculata* Nees) sebagai anti bakteri *Streptococcus pyogenes* ATCC 19615. Jurnal Medika Udayana. 10(3): 94-98.
- Edwin, E, PV Srinivasan, SS Nathan, A Thanigaivel, A Ponsankar, SS Rani, K Kalaivani, WB Hunter, V Duraipandiyan, and NA Al-Dhabi. 2016. Effect of andrographolide on phosphatases activity and cytotoxicity against *Spodoptera litura*. Invertebrate Survival Journal. 13: 153-163.
- Fauzana, H dan M Fadilla. 2022. Uji peningkatan konsentrasi *Metarhizium anisopliae* (Metsch.) pada media kompos dalam mengendalikan larva *Oryctes rhinoceros* L. Jurnal Agroteknologi. 12(2): 65-72.
- Flori, F, N Yunizar, Linawati, dan Kustiati. 2020. Efektivitas cendawan entomopatogen Metarhizium anisopliae dalam membunuh imago Musca domestica L. (Diptera : Muscidae). Bioeksperimen. 6(2): 101-105.
- Gargita, IWD, IP Sudiarta, dan GNAS Wirya. 2017.

 Pemanfaatan patogen serangga (*Beauveria bassiana* Bals.) untuk mengendalikan hama penghisap buah kakao (*Helopeltis* spp.) di Desa Gadungan, Kecamatan Selemadeg Timur, Kabupaten Tabanan. E-Jurnal Agroekoteknologi Tropika. 6(1): 11-20.
- Golo, PS, DR Gardner, MM Grilley, JY SB Takemoto, Krasnoff, MS Pires, ÉK Fernandes, VR Bittencourt, and DW Roberts. 2014. Production of destruxins from *Metarhizium* spp. fungi in artificial medium and in endophytically colonized cowpea plants. PLoS

- One. 9(8):e104946. DOI: 10.1371/journal.pone.0104946.
- Indrayani, IGAA, dan A Ridhawati. 2020. Evaluasi patogenisitas jamur *Metarhizium anisopliae* terhadap hama uret tebu, *Lepidiota stigma* (Coleoptera: Scarabaeidae). Buletin Plasma Nutfah. 26(1): 29-38.
- Indriyanti, DR, IB Damayanti, N Setiati, dan B Priyono. 2017. Mortalitas dan kerusakan jaringan pada setiap gejala infeksi larva *Oryctes rhinoceros* L. akibat perlakuan cendawan *Metarhizium anisoplia*. Life Science. 6(1): 9-17.
- Idris, H, dan Nurmansyah. 2016. Potensi ekstrak gambir, sirih-sirihan dan sambiloto untuk mengendalikan *Aphis schneideri* pada tanaman klausena. Buletin Penelitian Tanaman Rempah dan Obat. 27(2): 171-178.
- Kusnanto, T. 2020. Mengendalikan Hama Walang Sangit pada Tanaman Padi. Tersedia online pada: http://cybex.pertanian.go.id/detailprint.php?id=94085. (diakses 3 Januari 2023)
- Lingampally, L, VR Solanki, A Kaur, and SS Raja. 2013. Andrographolide an effective insect growth regulator of plant origin against *Tribolium confusum* (Duval). International Journal of Current Research. 5(1): 22-26.
- Liu, CM, SS Huang, and YM Tzeng. 2004. Analysis of destruxins produced from *Metarhizium anisopliae* by capillary electrophoresis. Journal of Chromatographic Science. 42(3): 140-144.
- Madihah, DM Malini, H Roviani, NV Rani, and W Hermawan. 2018. Andrographolide powder treatment as antifeedant decreased digestive enzyme activity from *Plutella xylostella* (L.) larvae midgut. AIP Conference Proceeding. 1927, 030013-1–030013-7. DOI: 10.1063/1.5021206.
- Manopo, R, CL Salaki, JEM Mamahit, dan E Senewe. 2013. Padat populasi dan intensitas serangan hama walang sangit (*Leptocorisa acuta* Thunb.) pada tanaman padi sawah di Kabupaten Minahasa Tenggara. Cocos. 2(3). DOI: https://doi.org/10.35791/cocos.v2i3.1515
- Milner, RJ, P Samsonn, and R Morton. 2003. Persistence of conidia of *Metarhizium anisopliae* in sugarcane fields: Effect of isolate and formulation on persistence over 3.5 years. Biocontrol Science and Technology. 13(5): 507-516.

- Nuraida, dan A Hasyim. 2009. Isolasi, identifikasi, dan karakterisasi jamur entomopatogen dari rizosfir pertanaman kubis. Jurnal Hortikultura. 19(4): 419-432.
- Park, DS, and JR Coats. 2002. Cyanogenic glycosides: Alternative insecticides. The Korean Journal of Pesticide Science. 6(2): 51-57.
- Prayogo, Y, W Tengkano, dan Marwoto. 2005. Prospek cendawan entomopatogen Metarhizium anisopliae untuk mengendalikan ulat grayak Spodoptera litura pada kedelai. Jurnal Litbang Pertanian. 24(1): 19-26.
- Ramli, dan STR Kusnara. 2019. Penambahan tepung serangga pada media perbanyakan *Metarhizium* sp. untuk meningkatkan virulensinya terhadap hama belalang padi Pandanwangi. Agroscience. 9(2): 178-188.
- Salaki, CL dan J Pelealu. 2015. Pemanfaatan biopestisida ramah lingkungan terhadap hama *Leptocorisa acuta* tanaman padi sawah. Eugenia. 21(3): 127-134.
- Sari, DE, Sulfiani, Fitrianti, dan AS Kumalasari. 2021. Senyawa Tumbuhan Metabolit Sekunder Agen Pengendali Organisme Pengganggu Tumbuhan. Bintang Pustaka Madani. Yogyakarta.
- Septiana, E. 2015. Jamur entomopatogen: Potensi dan tantangan sebagai insektisida alami terhadap serangga perusak tanaman dan vektor penyakit manusia. BioTrends. 1(1): 28-32.
- Suryadi, Y, dan TS Kadir. 2007. Pengamatan infeksi jamur patogen serangga *Metarhizium anisopliae* (Metsch. Sorokin) pada wereng coklat. Berita Biologi. 8(6): 501-507.
- Tajidin, NE, K Shaari, M Maulidiani, NS Salleh, BR Ketaren, dan M Mohamad. 2019. Metabolite profiling of *Andrographis paniculata* (Burm. f.) Nees. young and mature leaves at different harvest ages using ¹H NMR-based metabolomics approach. Scientific Reports. 9(1): 16766doi: 10.1038/s41598-019-52905-z.
- Tampubolon, DY, Y Pangestiningsih, F Zahra, dan FManik. 2013. Uji Patogenisitas Bacillus

- thuringiensis dan *Metarhizium anisopliae* terhadap mortalitas *Spodoptera litura* Fabr (Lepidoptera: Noctuidae) di laboratorium. Jurnal Agroekoteknologi. 1(3): 784-791.
- Trizelia, Nurbailis, dan E Ernawati. 2013. Virulensi berbagai isolat jamur entomopatogen *Metarhizium* spp. terhadap hama penggerek buah kakao *Conopomorpha cramerella* Snell. (Lepidoptera: Gracillariidae). Jirnal HPT Tropika. 13(2): 151-158.
- Widariyanto, R, MI Pinem, dan F Azahra. 2017. Patogenitas beberapa cendawan entomopatogen (Lecanicillium lecanii, Metarhizium anisopliae, dan Beauveria bassiana) terhadap Aphis glycines pada tanaman kedelai. Jurnal Online Agroekoteknologi. 5(1): 8-16.
- Winarsi, SN Aini, dan R Apriyadi. 2018. Determinasi pengaruh populasi walang sangit (*Leptocorisa oratorius* Fabricius) terhadap hasil gabah padi sawah di Desa Kimak, Kecamatan Merawang, Kabupaten Bangka. Agrosainstek. 2(1): 6-14.
- Wiryadiputra, S, I Rusda, dan IN Asyiah. 2014. Pengaruh ekstrak tanaman picung (*Pangium edule*) sebagai pestisida nabati terhadap mortalitas penggerek buah kopi. Pelita Perkebunan. 30(3): 220-228.
- Wongkar, J, D Tarore, dan J Rimbing. 2022. Patogenisitas *Metarhizium huainamdangense* isolat Dumoga Timur terhadap wereng batang coklat (*Nilaparvata lugens*) pada tanaman padi sawah. Jurnal Bios Logos. 12(1): 25-30.
- Yusuf, R. 2012. Potensi dan kendala pemanfaatan pestisida nabati dalam pendalian hama pada budidaya sayuran organik. Prosising Seminar UR-UKM ke-7 "Optimalisasi Riset Sains dan Teknologi dalam Pembangunan Berkelanjutan". Pekanbaru 8-10 Oktober 2012. Hlm. 171-173.
- Vattikonda, SR. 2015. Effect of andrographolide on feeding behaviour of *Papilio demoleus* L. (Lepidoptera: Papilionidae) larvae. Asian Journal of Biological Sciences. 10(1): 65-70.