Aplikasi Paket Pemupukan Organik dan Hayati Berbasis Bahan Lokal dalam Menekan Penggunaan Pupuk Fosfor Anorganik pada Tanah Calcarosol di Timor-Barat

Peters O. Bako¹, Moresi M Airtur¹, Diana YL Serangmo¹, dan Yosni Kiuk^{2*}

¹Program Studi Agroteknologi, Fakultas Pertanian, Universitas Nusa Cendana ²Program Studi Budi Daya Pertanian Lahan Kering, Universitas Pertahanan RI *Alamat Korespondensi: yosnikiuk21@gmail.com

INFO ARTIKEL

ABSTRACT/ABSTRAK

Diterima:

Direvisi:

Dipublikasi:

The Application of Organic and Bio Fertilizers from Local-Based Materials to Reduce the Use of Inorganic Phosphorus Fertilizers in Calcarosol Soil in West-Timor

Keywords: Biofertilizer, Corn, Organic fertilizer, Phosphorus

Calcarosol is a term which refers to soils that formed on top of limestone formations. The key issue encountered during cultivation in Calcarosol soils is the low availability of phosphorus (P) nutrient. The application of organic and biofertilizers is known to increase the P content in Calcarosols through several mechanisms. This research was conducted with the aim of examining the effectiveness of the package of organic and bio fertilizers in reducing the use of P-inorganic fertilizers on Calcarosol in West Timor. The research was carried out through an experimental study in the local farms of Penfui Village, Kelapa Lima District, Kupang City using a completely randomized design. The assigned treatments in this study included no fertilizer application (P0); the package of organic and bio fertilizers (P1); the package of organic and bio fertilizers + 50 kg/ha SP 36 (P2); the package of organic and bio fertilizers + 100 kg/ha SP-36 (P3); the package of organic and bio fertilizers + 150 kg/ha SP-36 (P4); the package of organic and bio fertilizers + 200 kg/ha SP-36 (P5); and the package of organic and bio fertilizers + 250 kg/ha (P6). The results showed (1) the P content of plant tissue under the application of the package of organic and bio fertilizers + 50 kg/ha SP-36 was not significantly different with the application the the package of organic and bio fertilizers + 250 kg/ha SP-36. It can be concluded that the use of the package of organic and bio fertilizers can reduce the use of SP-36 by 80% from the the dosage that applied by farmers to meet the needs of plant nutrient; (2) the application of the package of organic and bio fertilizers only was able to produce dry-shelled of corn seed weight per plant which was not significantly different compared to the application of the package of organic and bio fertilizers + 250 kg/ha SP-36. It can be concluded that the use of the package of organic and bio fertilizers can reduce the use of SP-36 fertilizer during the first growing season after the application.

Kata Kunci:

Fosfor, Jagung, Pupuk hayati, Pupuk organik Calcarosol merupakan istilah yang merujuk pada tanah-tanah yang terbentuk di atas formasi batuan kapur (*limestone*). Permasalahan utama yang ditemui dalam kegiatan budidaya jagung di tanah Calcarosol adalah ketersediaan hara fosfor (P) yang rendah. Aplikasi pupuk organik dan pupuk hayati diketahui dapat meningkatkan hara P pada tanah Calcarosol melalui beberapa mekanisme. Penelitian ini dilakukan dengan tujuan untuk menguji keefektifan paket pemupukan organik dan hayati (PPOH) dalam menekan penggunaan pupuk P-anorganik (SP-36) pada Calcarosol di Timor Barat. Penelitian

dilaksanakan melalui kegiatan percobaan di lahan milik petani di Kelurahan Penfui, Kecamatan Kelapa Lima Kota Kupang dengan menggunakan rancangan acak lengkap (RAL). Perlakuan yang dicobakan meliputi: tanpa aplikasi pupuk (P0); PPOH tanpa penambahan pupuk sintetis (P1); PPOH + 50 kg/ha SP 36 (P2); PPOH + 100 kg/ha SP-36 (P3); PPOH + 150 kg/ha SP-36 (P4); PPOH + 200 kg/ha SP-36 (P5); dan PPOH + 250 kg/ha (P6). Hasil penelitian menunjukkan: (1) kandungan hara P jaringan tanaman pada perlakuan aplikasi PPOH + 50 kg/ha SP-36 yang tidak berbeda secara signifikan dengan perlakuan PPOH + 250 kg/ha SP-36 membuktikan bahwa dengan aplikasi PPOH, penggunaan pupuk SP-36 dapat dikurangi hingga 80% dari dosis yang umum digunakan oleh petani untuk memenuhi kebutuhan hara P tanaman; (2) bobot biji pipilan kering jagung pada perlakuan PPOH saja yang tidak berbeda secara signikan dengan perlakuan PPOH + 250 kg/ha SP-36 membuktikan bahwa aplikasi PPOH mampu mensubtitusi penggunaan pupuk SP-36 di tanah Calcarosol pada musim tanam pertama pasca aplikasi.

PENDAHULUAN

Tanah-tanah yang tersebar di Timor Barat, Provinsi Nusa Tenggara Timur (NTT) umumnya tergolong sebagai tanah muda seperti Entisol, Inceptisol, Mollisol, Alfisol, dan Vertisol yang sebagian besarnya terbentuk di atas formasi geologi berupa batuan kapur (Carson, 1995). Tanah-tanah yang terbentuk di atas formasi batuan kapur dikenal sebagai tanah Calcarosol yang dicirikan dengan tingginya kandungan kalsium karbonat (CaCO3) yang sangat mempengaruhi sifat fisik dan kimia tanah serta pertumbuhan tanaman (Taalab *et al.*, 2019).

Tanaman yang tumbuh pada tanah Calcarosol umumnya mengalami kekurangan hara fosfor (P) karena sebagian besar P dalam tanah difiksasi oleh CaCO3 dan berada sebagai endapan kalsium fosfat. Rendahnya ketersediaan P tersebut sangat membatasi pertumbuhan tanaman karena P merupakan unsur hara esensial bagi tanaman dan dianggap sebagai penentu kehidupan (*key of life*). Hara P terlibat langsung pada seluruh proses kehidupan tanaman dan dimanfaatkan tanaman sejak fase perkecambahan, fase vegetatif hingga fase generatif tanaman (Budi & Sari, 2015).

Jagung merupakan salah satu jenis tanaman pangan yang dominan dibudidayakan pada tanah Calcarosol di Timor Barat. Sebagian masayarakat di daerah ini menjadikan jagung sebagai makanan pokok pengganti beras, terutama di musim paceklik. Produktivitas jagung di NTT, termasuk di Timor Barat masih tergolong rendah, Pada tahun 2021, luas panen jagung di NTT mencapai 305.000 ha dengan total produksi jagung sebesar 751.209 ton (BPS NTT, 2022). Berdasarkan data ini, dapat dihitung

produktivitas jagung di NTT yakni sebesar 2,46 ton/ha. Nilai produktivitas ini masih jauh di bawah rata-rata produktivitas jagung nasional pada tahun 2021 sebesar 5,71 ton/ha (BPS, 2022) dan potensi hasil dari beberapa varietas unggul jagung seperti Kalingga, Wisanggeni, Bisma, dan Lamuru yang dapat mencapai 7,0 – 8,0 ton/ha (Pusat Penelitian dan Pengembangan Tanaman Pangan, 2021).

Upaya peningkatan ketersediaan hara P di tingkat petani pada tanah Calcarosol di Timor Barat selama ini dilakukan dengan mengaplikasikan pupuk P-anorganik seperti TSP dan SP-36. Pemupukan Panorganik ini seringkali harus dilakukan dengan dosis tinggi dan tidak terkontrol untuk mendapatkan respon tanaman yang signifikan. Hasil wawancara dengan beberapa petani jagung di Timor Barat menunjukkan bahwa dosis SP-36 yang diaplikasikan pada pertanaman jagung mencapai 250 kg/ha untuk setiap musim tanam. Aplikasi pupuk SP-36 dengan dosis tinggi ini berkaitan dengan efisiensi pemupukan P yang relatif rendah pada tanah Calcarosol sebagai akibat dari rendahnya kelarutan P dalam tanah. Taalab et al., (2019) mengemukakan aplikasi pupuk P pada takaran "normal" dengan metode konvensional sering kali tidak memberikan hasil tanaman yang optimal dari aspek kuantitas maupun kualitas.

Penggunaan pupuk P-anorganik pada lahan Calcarosol dapat dikurangi dengan mengkombinasikan pupuk P-anorganik dengan pupuk organik dan pupuk hayati. Penerapan teknologi terpadu pemupukan dengan mengkombinasikan semua sumber pupuk ini merupakan strategi pengelolaan lahan kering yang dapat meningkatkan produktivitas tanah dan hasil tanaman (Lombin et al., 1991; Heryani &

Rejekningrum, 2019). Hasil penelitian Moelyohadi *et at.*, (2013) menunjukkan bahwa perlakuan 50% dosis anjuran pupuk kimia dengan perlakuan kombinasi pupuk kompos kotoran ayam dan pupuk mikoriza mampu memberikan pengaruh terbaik terhadap pertumbuhan dan produksi jagung serta efisiensi hara di lahan kering.

Beberapa sumber bahan organik dan hayati di Timor Barat yang keterediaannya secara in situ tinggi berpotensi untuk dikombinasikan dengan pupuk P-anorganik adalah pupuk kandang sapi, pupuk hijau kirinyu (Chromolaena odorata), dan pupuk hayati mikoriza. Potensi pupuk kandang sapi di Timor Barat relatif tinggi. Pada tahun 2021 jumlah ternak sapi di enam kabupaten di Timor Barat, yakni Kota Kupang, Kabupaten Kupang, Timor Tengah Selatan, Timor Tengah Utara, Belu, dan Malaka mencapai 363.487 ekor (BPS NTT, 2022). Jika satu ekor sapi menghasilkan kotoran padat (feses) sebanyak 25 kg per hari (Saputro et al., 2014) maka dalam satu tahun pupuk kandang yang dihasilkan adalah 3.316.818 ton.

Potensi kirinyu sebagai sumber pupuk hijau terlihat dari kemampuannya dalam menginvasi hampir seluruh lahan di Timor Barat. Kemampuan kirinyu dalam menginyasi lahan yang tinggi berkaitan dengan beberapa sifat dari tanaman ini, yakni: (1) kirinyu mampu menghasilkan senyawa alelopati yang dapat menghambat pertumbuhan tanaman lainnya sehingga dengan mudah menyebar pada suatu lahan yang telah diinvasinya; (2) kirinyu mempunyai kemampuan berkembang biak yang cepat dengan biji maupun secara vegetatif dengan cabang lateral; dan (3) tanaman ini juga dengan mudah dapat tumbuh kembali setelah pembabatan atau pembakaran (Nugroho, et al., 2019). Beberapa sumber menyebutkan, pada umur 6 bulan kirinyu dapat menghasilkan biomassa segar sebesar 11,2 ton/ha dan mencapai 27,7 ton/ha pada umur 3 tahun (Herlangga et al., 2017).

Potensi mikoriza sebagai pupuk hayati juga tinggi karena jamur mikoriza dapat diisolasi berbagai tempat termasuk dari tanah Calcarosol di Timor Barat. Aplikasi mikoriza merupakan suatu bentuk investasi pemupukan jangka panjang karena cukup dilakukan satu kali dalam satu siklus hidup tanaman. Spora mikoriza bersifat obligat dan hidup di dalam akar tanaman sehingga akan tetap bertahan dan terus berkembang di dalam tanah selama tersedia tanaman inangnya. Tanpa tanaman inang, spora mikoriza masih mampu bertahan hidup hingga 6 bulan bahkan

dapat bertahan hingga 2 tahun (Brundrett *et al.*, 2008; Rini *et al.*, 2020).

Peningkatan ketersediaan dan penyerapan hara P akibat aplikasi pupuk kandang sapi, dan pupuk hijau kirinyu, dapat terjadi melalui sumbangan langsung hara P, karena kedua jenis pupuk ini mengandung hara P yang cukup tinggi yakni 0,385% pada kirinyu (Jusman et al., 2018) dan 0,25% pada pupuk kandang sapi (Hafizah & Mukarramah, 2017). Peningkatan ketersediaan hara P juga terjadi akibat dihasilkannya sejumlah asam organik dalam proses dekomposisi kedua jenis pupuk ini. Asam-asam organik seperti asam oksalat, asam malonate, dan asam tatrat menghasilkan anion-anion organik. Anion organik mempunyai sifat yang mengikat Al, Fe, dan Ca dari larutan tanah, kemudian akan membentuk senyawa kompleks yang sukar larut. Dengan demikian konsentrasi Al, Fe, dan Ca dari larutan tanah akan menurun dan akan diikuti oleh peningkatan ketersediaan P-tanah (Damayani, 2014)

Aplikasi mikoriza mampu meningkatkan ketersediaan hara P dalam tanah dan penyerapannya oleh tanaman. Peningkatan ketersediaan P terjadi sebagai akibat adanya modifikasi kimia oleh mikoriza terhadap akar tanaman sehingga mengeksudasi asam-asam organik dan enzim fosfotase yang memicu proses mineralisasi hara P. Peningkatan penyerapan P terjadi melalui beberapa mekanisme, yakni: (1) meningkatnya luas area serapan hara karena adanya hifa mikoriza dengan ukuran yang panjang dengan diameter yang jauh lebih kecil dari diameter akar sehingga dapat menyebar luas dan mengisi rongga dalam tanah; (2) perpendekan jarak difusi dalam pergerakan P di dalam tanah karena adanya hira eksternal yang juga berfungsi sebagai alat penyerap dan translokasi fosfat; dan (3) dimungkinkannya penyerapan hara P pada tanaman bermikoriza saat konsentrasi hara P di dalam tanah sangat rendah (minimum) dan tidak mampu diserap lagi oleh akar tanaman (Basri, 2018; Etesami et al., 2021; Tejakusuma et al., 2023)

Bako & Serangmo (2019) telah melakukan penelitian tentang alternatif pengelolaan hara fosfor (P) pada budidaya jagung di lahan kering berkapur Pulau Timor dengan memanfaatkan potensi organik lokal. Penelitian tersebut telah menghasilkan Paket Pemupukan Organik dan Hayati (PPOH) terbaik dalam meningkatkan serapan hara P dan hasil tanaman jagung yang terdiri dari 7,5 ton/ha pupuk kandang sapi, 15 ton/ha pupuk hijau kirinyu dan 50 spora mikoriza indigen dari golongan *Glomus* sp. Penelitian ini merupakan lanjutan dari penelitian

Bako & Serangmo (2019) yang dilakukan dengan mengkombinasikan PPOH terbaik tersebut dengan beberapa level pemupukan P anorganik (SP-36) dengan tujuan untuk mengetahui keefektifan PPOH dalam menekan penggunaan pupuk P-anorganik dan meningkatkan pertumbuhan serta produktivitas jagung pada tanah Calcarosol di Timor Barat.

METODE PENELITIAN

Penelitian ini telah dilaksanakan di lahan milik petani di Kelurahan Penfui, Kecamatan Kelapa Lima, Kota Kupang, dan di Laboratorium Kimia Tanah Fakultas Pertanian, Universitas Nusa Cendana. Penelitian dirancang dalam percobaan faktor tunggal menggunakan rancangan acak lengkap. Penempatan percobaan di lahan dilakukan pertimbangan bahwa proses penyerbukan pada tanaman jagung merupakan penyerbukan silang dengan bantuan angin sehingga dibutuhkan populasi tanaman yang relatif besar untuk menjamin terjadinya proses penyerbukan. Untuk mendapatkan populasi tanaman yang relatif besar maka di bagian lahan di sekitar pot-pot percobaan juga ditanami jagung. Pemilihan rancangan acak lengkap didasarkan pada pertimbangan bahwa percobaan yang digunakan relatif datar dan terbuka (bebas dari naungan) sehingga semua pot percobaan mendapatkan kondisi lingkungan yang relatif sama (homogen) (Gambar 1).

Gambar 1. Pot-pot tanaman jagung yang diberi berbagai perlakuan paket pemupukan organik dan hayati (PPOH) di lahan terbuka yang bebas dari naungan. (a) tanaman berumur 2 minggu setelah tanam, dan (b) tanaman berumur 6 minggu setelah tanam.

Perlakuan yang dicobakan adalah kombinasi paket pemupukan organik dan hayati (PPOH) terbaik hasil penelitian Bako & Serangmo (2019) dengan beberapa level dosis SP-36. PPOH terdiri dari 7,5 ton/ha pupuk kandang sapi + 15 ton/ha pupuk hijau kirinyu + 50 spora mikoriza indigen. Selengkapnya, perlakuan yang dicobakan adalah: tanpa aplikasi pupuk (P0); PPOH + 0 kg/ha SP-36 (P1) PPOH + 50 kg/ha SP36 (P2); PPOH + 100 kg/ha SP-36 (P3); PPOH + 150 kg/ha SP-36 (P4); PPOH + 200 kg/ha SP-36 (P5); dan 250 kg/ha SP-36 (P6), Masing-masing perlakuan dibuat dalam 3 ulangan.

Isolasi Spora Mikoriza

Spora mikoriza yang digunakan pada penelitian ini adalah spora mikoriza dari golongan *Glomus* sp. dengan karakteristik warna spora putih kekuningan, bentuk spora bulat, dan permukaan spora halus. Isolasi spora dilakukan dengan metode wet sieving (penyaringan basah) menurut petunjuk Brundrett et al. (2008). Spora mikoriza yang telah diisolasi ditempatkan pada potongan kertas saring Whatman no 41 sebanyak 50 spora untuk masingmasing potongan kertas saring. Lembaran kertas saring berisi spora mikoriza disimpan di dalam lemari pendingin sebelum diaplikasikan pada pot percobaan.

Persiapan Media Tanam

Media tanam yang digunakan adalah tanah Alfisol yang diambil dari lahan milik petani di Kelurahan Penfui, Kecamatan Kelapa Lima, Kota Kupang. Kriteria tanah yang digunakan adalah tanah dengan kandungan hara P-total yang tinggi namun kandungan P-tersedianya rendah. Tanah diambil dari

lima titik yang berbeda dengan kedalaman 0-20 cm dari permukaan tanah kemudian dikompositkan. Tanah hasil komposit dikering-udarakan kemudian dihancurkan dan diayak menggunakan ayakan dengan ukuran mata ayakan 2 mm.

Tanah hasil ayakan kemudian disterilkan menggunakan formalin 5%. Sterilisasi tanah dilakukan sebagai berikut: 30 kg tanah yang dijadikan media tanam untuk satu pot percobaan dihamparkan di atas terpal. Selanjutnya 750 ml larutan formalin 5% disemprotkan secara merata pada tanah dan dicampurkan sampai merata. Tanah yang telah dicampur formalin kemudian dimasukkan ke dalam kantong plastik dan ditutup rapat lalu diinkubasikan selama satu minggu. Setelah satu minggu, tanah dituangkan ke dalam pot percobaan. Pot berisi tanah dibiarkan terbuka selama seminggu dikeringanginkan agar aroma formalinnya hilang.

Aplikasi Pupuk Kandang Sapi dan Pupuk Hijau Kirinyu

Aplikasi pupuk kandang sapi dan pupuk hijau kirinyu pada pot percobaan yang mendapat perlakuan PPOH dilakukan 2 minggu sebelum tanam. Dosis pupuk kandang sapi yang digunakan adalah 7,5 ton/ha (setara 112,5 g/pot), sedangkan dosis pupuk hijau kirinyu yang dicobakan adalah 15 ton/ha (setara 225,0 g/pot). Pupuk kandang sapi dan pupuk hijau kirinyu dicampurkan secara merata dengan 30 kg tanah steril lalu dimasukkan ke dalam pot percobaan. Pot percobaan selanjutnya diinkubasi selama 2 minggu sebelum dilakukan penanaman benih jagung. Selama masa inkubasi pot percobaan disiram setiap hari agar tanah selalu dalam kondisi lembab.

Penanaman Tanaman dan Aplikasi Pupuk Hayati Mikoriza

Penanaman jagung dilakukan dengan cara tugal sedalam ± 5 cm untuk pot percobaan yang tidak mendapatkan perlakuan kombinasi pupuk (P0), sedangkan untuk pot percobaan yang mendapatkan perlakuan kombinasi pupuk, penanaman dilakukan bersamaan dengan aplikasi spora mikoriza dengan cara berlapis. Penanaman dilakukan dengan cara membuat tugal sedalam 7 cm pada media tanam. Potongan kertas saring yang berisi 50 spora mikoriza dimasukkan ke dalam lubang tanam dan ditutupi dengan tanah tipis. Selanjutnya 3 benih jagung di tempatkan pada lapisan tipis tanah tersebut lalu ditutupi lagi dengan tanah. Penanaman jagung dilakukan di lahan di sekitar pot-pot percobaan

dengan pertimbangan bahwa proses penyerbukan pada tanaman jagung terjadi melalui penyerbukan silang sehingga dibutuhkan populasi yang relatif besar untuk menjamin terjadinya proses penyerbukan secara optimum.

Aplikasi Pupuk SP-36

Aplikasi pupuk SP-36 untuk pot percobaan yang mendapat perlakuan kombinasi pupuk dilakukan sesaat setelah penanaman. Pupuk SP-36 di aplikasikan dengan cara di tebar pada larikan yang di buat di sekeliling benih jagung pada jarak ± 5 cm dengan kedalaman larikan ± 1 cm. Dosis SP-36 yang diaplikasikan adalah 1,25 g/pot untuk perlakuan P2 (50 kg/ha), 2,5 g/pot untuk perlakuan P3 (100 kg/ha); 3,75 g/pot untuk perlakuan P4 (150 kg/ha); 5,00 g/pot untuk perlakuan P5 (200 kg/ha), dan 6,25 g/pot untuk perlakuan P6 (250 kg/ha)

Penjarangan Tanaman dan Aplikasi Pupuk Dasar

Penjarangan tanaman dilakukan bersamaan dengan aplikasi pupuk dasar yakni pada umur tanaman 7 hari setelah tanam (HST). Penjarangan tanaman dilakukan dengan cara menggunting tanaman jagung pada bagian pangkal batang tepat di atas permukaan tanah dengan menyisakan satu tanaman sehat per polybag. Pupuk dasar yang diaplikasikan adalah urea dan KCL dengan dosis 200 kg/ha urea (setara 3 g/pot) dan 150 kg/ha KCl (setara dengan 2,25 g/pot). Aplikasi pupuk dilakukan dengan cara ditebar pada larikan yang dibuat di sekeliling tanaman pada jarak sekitar ± 5 cm dengan kedalaman larikan ± 3 cm.

Pemeliharaan Tanaman

Kegiatan pemeliharan dilakukan yang meliputi penyiraman dan penyiangan gulma. Tanaman disiram setiap hari dengan volume air sama untuk masing-masing pot percobaan sampai kadar air tanah mencapai kondisi kapasitas lapang. Penyiangan dilakukan setiap ada gulma yang tumbuh pada media tanam. Pengendalian hama dan penyakit tidak dilakukan karena keseluruhan tanaman pada pot-pot percobaan tidak menunjukkan adanya gejala serangan hama dan patogen. Pemanenan dilakukan pada umur tanaman 97 HST dengan kriteria panen berupa: sebagian besar (80%) daun telah mengering, kulit (kelobot) telah menguning, dan bulir jagung terlihat mengkilap dan keras (jika ditekan dengan kuku tidak meninggalkan bekas).

Variabel Pengamatan dan Analisis Data

Variabel yang diamati pada penelitian ini meliputi: kandungan hara P jaringan tanaman, tinggi tanaman dan total luas daun per tanaman, panjang tongkol, lingkar tongkol, jumlah barisan biji per tongkol dan bobot biji jagung pipilan kering per tanaman. Data hasil pengamatan dianalisis dengan sidik ragam (ANOVA = analysis of varians) untuk mengetahui pengaruh perlakuan yang dicobakan dan dilanjutkan dengan uji jarak berganda Duncan (Duncan multiple range test = DMRT) untuk melihat perbedaan antar perlakuan (Sastrosupadi, 2007).

HASIL DAN PEMBAHASAN

Karakteristik Awal Tanah

Hasil analisis beberapa sifat tanah Calcarosol dari ordo Alfisol yang digunakan pada penelitian ini menunjukkan kondisi yang relatif subur. Hal ini terlihat dari perbandingan nilai masing-masing sifat tanah yang dianalisis dengan kriteria standar kesuburan tanah menurut Pusat Penelitian dan Pengembangan Tanah Bogor (Hardjowigeno, 2007). Hasil analisis yang disajikan pada Tabel 1 menunjukkan bahwa tekstur tanah termasuk dalam kelas lempung berdebu. Tanah dengan tekstur lempung sangat optimal untuk digunakan sebagai lahan budidaya tanaman karena memiliki kapasitas dalam menjerap hara yang lebih besar daripada tanah bertekstur pasir (Rini et al., 2020). Tanah berstekstur lempung juga memiliki drainase, aerasi serta kemudahan olah yang lebih baik daripada tanah bertekstur liat (Balai Besar Penelitian Pengembangan Sumberdaya Lahan Pertanian, 2006).

Tabel 1. Hasil analisis sifat Calcarosol dari ordo Alfisol

Parameter	Nilai	Kategori*)
Tekstur	Lempung berdebu	-
pН	6,6	Netral
Kapasitas Tukar Kation (mg/100 g)	26,05	Sedang
C-organik (%)	2,81	Sedang
N-total (%)	0,36	Sedang
P-total (ppm)	799.1	Sangat tinggi
P-tersedia (ppm)	8,81	Sangat rendah
K-dd (me/100 g)	0,9	Sangat tinggi

Keterangan: Hasil analisis pada Laboratorium Kimia Tanah, Fakultas Pertanian, Universitas Nusa Cendana
*) Kriteria kesuburan tanah menurut Puslitbang Tanah Bogor *dalam* Hardjowigeno (2007)

pH tanah hasil pengukuran berada pada kategori netral. Tanah dengan pH netral mampu menjamin penyediaan unsur hara yang optimal bagi tanaman karena hampir semua unsur hara tersedia pada kondisi pH netral (FAO, 1984). Taisa et al., (2021) mengemukakan pada pH tanah antara 5,5 – 7 ketersediaan unsur hara makro dan mikro berada dalam kondisi optimum. Selain itu, pH tanah juga ikut memengaruhi nilai kapasitas tukar kation (KTK) tanah. KTK tanah cenderung meningkat seiring dengan meningkatnya pH tanah. Peningkatan KTK tanah akan meningkatkan kemampuan kemampuan tanah dalam mempertukarkan kation-kation yang relatif baik sehingga ketersediaan hara dalam tanah juga meningkat. Hasil analisis menunjukkan KTK tanah berada pada kategori sedang.

Kandungan C-organik dan N-total tanah berada pada ketegori sedang. Kondisi ini juga relatif baik karena tanah-tanah di NTT umumnya memiliki kandungan C-organik dan N-total tanah yang rendah sampai sangat rendah. Rendahnya kandungan Corganik dan N-total tersebut berkaitan erat dengan minimnya vegetatif penutup tanah yang nenjadi pemasok bahan organik yang menjadi sumber utama N dan C-organik di dalam tanah. Bingham & Cotrufo (2016) mengemukakan bahwa sebagian besar N yang ada di dalam tanah berada di dalam bentuk senyawa N-organik. Kandungan K-dd tanah hasil analisis berada pada kategori sangat tinggi berkaitan dengan bahan induk tanah yang berasal dari batuan kapur. Aisyah *et al.*, (2015) mengemukakan tanah-tanah yang terbentuk pada daerah berkapur biasanya kaya akan kation-kation basa seperti Ca²⁺, Mg²⁺, Na⁺, dan K⁺.

Permasalahan utama terlihat pada keterdapatan hara P dalam tanah. Hasil analisis menunjukkan bahwa kandungan P-total tanah berada pada kategori sangat tinggi namun P-tersedia tanahnya sangat rendah. Kondisi ini sangat mungkin terjadi karena kandungan Ca yang tinggi pada

Calcarosol dapat memfiksasi unsur P di dalam tanah menjadi bentuk yang tidak tersedia bagi tanaman (Taalab *et al.*, 2019). Rendahnya ketersediaan hara P ini mengindikasikan perlunya pengelolaan hara P untuk meningkatkan serapan hara P dan produksi jagung di daerah ini. Alternatif pengelolaan hara P yang dapat diterapkan adalah aplikasi pemupukan terpadu dengan memanfaatkan semua sumber hara P yang ada seperti pupuk P-anorganik (SP-36), pupuk organik (pupuk kandang sapi pupuk dan pupuk hijau kirinyu), serta pupuk hayati (mikoriza).

Kandungan Hara P-Jaringan Tanaman Jagung

Hasil sidik ragam menunjukkan bahwa perlakuan PPOH yang dikombinasikan dengan pupuk SP-36 berpengaruh sangat nyata terhadap kandungan hara P jaringan tanaman jagung. Hasil uji DMRT 5% (Tabel 2) menunjukkan bahwa kandungan hara P jaringan tanaman pada perlakuan tanpa aplikasi pupuk (P0) paling rendah yakni sebesar 0,24%. Rendahnya kandungan hara P jaringan tanaman pada perlakuan P0 ini terjadi karena pada perlakuan ini tanaman hanya mengandalkan hara P yang ada di dalam tanah dengan konsentrasi kelarutan yang sangat rendah. Akibatnya, laju serapan hara P oleh tanaman menjadi rendah yang berdampak pada rendahnya kandungan hara P-jaringan tanaman.

Tabel 2. Rata-rata kandungan hara P jaringan tanaman jagung (%) pada perlakuan kombinsi paket pemupukan organik dan hayati (PPOH) dengan pupuk SP-36

Perlakuan Kombinasi Paket Pemupukan Organik	Kandungan Hara P Jaringan Tanaman
dengan SP-36	(%)
Tanpa aplikasi pupuk (P0)	0,24 a
PPOH + 0 kg/ha SP-36(P1)	0,27ab
PPOH + 50 kg/ha SP-36 (P2)	0,46cd
PPOH + 100 kg/ha SP-36 (P3)	0,32abc
PPOH + 150 kg/ha SP-36 (P4)	0,52d
PPOH + 200 kg/ha SP-36 (P5)	0,43bcd
PPOH + 250 kg/ha SP-36 (P6)	0,46cd

Keterangan: angka-angka yang diikuti oleh huruf yang sama berbeda tidak nyata pada uji DMRT 5%

Aplikasi PPOH tanpa disertai pupuk SP-36 (P1) ternyata belum mampu meningkatkan kandungan hara P jaringan tanaman secara siginfikan dibanding perlakuan tanpa aplikasi pupuk (P0). Kondisi ini mengindikasikan bahwa tambahan hara P dari pupuk kandang sapi dan pupuk hijau kirinyu serta kerja mikoriza dalam meningkatkan ketersediaan dan serapan P pada perlakuan ini belum memadai untuk meningkatkan kandungan hara Pjaringan tanaman. Selanjutnya pada perlakuan kombinasi PPOH dengan 50 kg/ha SP-36 (P2) terjadi peningkatan kandungan hara P jaringan tanaman secara signifikan dibanding perlakuan P0 dan P1. Adanya tambahan hara P asal pupuk SP-36 ke dalam tanah ternyata mampu meningkatkan kelarutan P dalam tanah dan serapannya oleh tanaman yang tercermin dari nilai kandungan hara P-jaringan tanaman yang relatif tinggi.

Hasil analisis (Tabel 2) selanjutnya menunjukkan bahwa kandungan P jaringan tanaman pada perlakuan kombinasi PPOH dengan 100 kg/ha SP-36 (P3); 150 kg/ha SP-36 (P4); 200 kg/ha SP-36 (P5); dan 250 kg/ha SP-36 (P6) tidak berbeda secara

signifikan dibanding perlakuan kombinasi PPOH dengan 50 kg/ha SP-36 (P2). Hal ini menunjukkan bahwa kebutuhan P tanaman sudah tercukupi dengan mengaplikasikan PPOH + 50 kg/ha SP-36 (P2) sehingga peningkatan dosis SP-36 menjadi 100 kg/ha hingga 250 kg/ha tidak menyebabkan terjadinya peningkatan serapan hara P yang berdampak pada nilai kandungan hara P jaringan tanaman yang relatif sama pada perlakuan-perlakuan tersebut.

Nilai kandungan hara P jaringan tanaman pada perlakuan P2 (PPOH + 50 kg/ha SP-36) yang tidak berbeda secara signifikan dengan perlakuan P6 (PPOH + 250 kg/ha SP-36) mengindikasikan bahwa dengan diaplikasikannya PPOH maka kandungan hara P jaringan tanaman mengalami peningkatan sehingga pupuk anorganik (SP-36) dapat diberikan dengan dosis rendah (50 kg/ha) untuk memenuhi hara P tanaman. Dosis SP-36 sebesar 250 kg/ha merupakan dosis SP-36 yang biasanya diterapkan oleh petani jagung di Timor Barat. Dapat disimpulkan bahwa dengan aplikasi PPOH, jumlah SP-36 yang diberikan dapat ditekan hingga 50 kg/ha untuk memenuhi kebutuhan hara P tanaman jagung.

Terjadi penghematan sebesar 80% dari dosis SP-36 yang biasanya diterapkan oleh petani.

Hasil penelitian ini sejalan dengan beberapa hasil penelitian yang menunjukkan bahwa aplikasi pupuk anorganik yang dikombinasikan dengan pupuk organik dan pupuk hayati mampu meningkatkan serapan hara P tanaman. Taisa *et al.*, (2021) melaporkan hasil penelitiannya yang menunjukkan pemberian pupuk anorganik yang ditambahkan pupuk hayati P berupa bakteri pelarut fosfat dan kompos mampu meningkatkan kandungan hara P-tersedia tanah sebesar 16,30 ppm dengan efisiensi pemupukan sebesar 19,43 % untuk tanaman jagung pada inceptisol.

Pertumbuhan Tanaman Jagung

Variabel pertumbuhan tanaman jagung pada penelitian ini diwakili oleh tinggi dan total luas daun per tanaman yang diamati pada akhir fase pertumbuhan vegetatif. Hasil sidik ragam menunjukkan, **PPOH** perlakuan yang dikombinasikan dengan pupuk SP-36 berpengaruh sangat nyata terhadap tinggi dan total luas daun per tanaman jagung. Hasil uji DMRT 5% (Tabel 3) menunjukkan bahwa pertumbuhan tanaman jagung pada perlakuan tanpa aplikasi pupuk (P0) terlihat mengalami hambatan yang diindikasikan dengan tinggi dan total luas daun per tanaman yang paling rendah, yang berbeda secara signifikan dengan perlakuan lainnya. Tinggi tanaman pada perlakuan P0 adalah 116,83 cm sedangkan total luas daun per tanamannya sebesar 2.888,70 cm².

Tabel 3. Rata-rata tinggi tanaman dan total luas daun per tanaman jagung pada perlakuan kombinsi paket pemupukan organik-hayati dengan pupuk SP-36

	•	
Perlakuan Kombinasi Sumber Pupuk P	Tinggi Tanaman	Total Luas Daun per Tanaman
remakuan komomasi Sumber rupuk r	(cm)	(cm ²)
Tanpa aplikasi pupuk (P0)	116,83a	2888,70a
PPOH + 0 kg/ha SP-36(P1)	145,50c	4927,68b
PPOH + 50 kg/ha SP-36 (P2)	135,33bc	5567,67bc
PPOH + 100 kg/ha SP-36 (P3)	145,00c	5967,76c
PPOH + 150 kg/ha SP-36 (P4)	143,67c	6015,84c
PPOH + 200 kg/ha SP-36 (P5)	142,67c	5687,53bc
PPOH + 250 kg/ha SP-36 (P6)	129,83b	5351,28bc

Keterangan: angka-angka yang diikuti oleh huruf yang sama adalah berbeda tidak nyata pada uji DMRT 5%

Tinggi tanaman jagung terihat mengalami peningkatan secara signifikan pada perlakuan aplikasi PPOH + 0 kg/ha SP-36 (P1) menjadi 145,50 cm dibanding perlakuan tanpa aplikasi pupuk (P0). Hal ini mengindikasikan bahwa aplikasi PPOH mampu memperbaiki kesuburan tanah. Unsur yang ditambahkan melalui aplikasi PPOH sudah mampu memenuhi kebutuhan tanaman jagung yang berdampak pada tinggi tanaman yang meningkat secara signifikan dibanding perlakuan tanpa aplikasi pupuk.

Hasil analisis selanjutnya (Tabel 3) menunjukkan bahwa aplikasi PPOH + 50 kg/ha (P2) hingga 200 kg/ha (P5) tidak menyebabkan terjadinya peningkatkan tinggi tanaman secara signifikan dibanding perlakuan P1. Hara P sebenarnya berperan penting dalam pertumbuhan tinggi tanaman jagung karena P dibutuhkan oleh tanaman untuk pembentukan sel baru pada jaringan yang sedang tumbuh serta memperkuat batang tanaman (Rahmawati *et al.*, 2018). Walaupun demikian, pada

perlakuan P2 hingga P5, penambahan pupuk SP-36 dengan dosis 50 kg/ha hingga 200 kg/ha tidak menyebabkan pertambahan tinggi tanaman secara signifikan dibanding perlakuan P1. Hal ini membuktikan bahwa kebutuhan hara P untuk pertumbuhan tinggi tanaman jagung telah terpenuhi pada perlakuan aplikasi PPOH + 0 kg/ha SP-36 sehingga penambahan pupuk SP-36 dengan dosis 50 kg/ha (P2) hingga 250 kg/ha (P6) tidak lagi berdampak pada pertambahan tinggi tanaman jagung.

Total luas daun per tanaman jagung terlihat mengalami peningkatan secara signifikan akibat adanya aplikasi paket pemupukan organik-hayati (P1) dibanding perlakuan tanpa aplikasi pupuk (P0). Selanjutnya, penambahan pupuk SP-36 dengan dosis 50 kg/ha (P2) belum mampu meningkatkan total luas daun secara signifikan dibanding perlakuan P1. Total luas daun per tanaman baru mengalami peningkatan secara signifikan dibanding perlakuan P1 saat dosis SP-36 ditingkatkan menjadi 100 kg/ha (P3). Walaupun demikian, peningkatan dosis SP-36

selanjutnya menjadi 150 kg/ha (P4), 200 kg/ha (P5) dan 250 kg/ha tidak lagi disertai dengan meningkatnya total luas daun per tanaman secara signifikan dibanding perlakuan P3. Dari Tabel 3 terlihat bahwa total luas daun per tanaman jagung pada perlakuan kombinasi PPOH + 50 kg/ha pupuk SP-36 (P2) tidak berbeda secara signifikan dengan perlakuan PPOH + 250 kg/ha SP-36 (P6). Hal ini berarti dengan diaplikasikannya paket pemupukan organik-hayati, dosis pupuk SP-36 dapat ditekan dari 250 kg/ha (dosis menurut kebiasaan petani) menjadi hanya 50 kg/ha (terjadi penghematan sebesar 80%).

Hasil Tanaman Jagung

Variabel hasil tanaman jagung pada penelitian ini diwakili oleh ukuran tongkol (panjang dan lingkar tongkol), jumlah barisan biji per tongkol dan bobot biji jagung pipilan kering. Hasil sidik ragam menunjukkan perlakuan paket pemupukan organikhayati yang dikombinasikan dengan pupuk SP-36 berpengaruh sangat signifikan terhadap panjang dan lingkar tongkol serta bobot biji jagung pipilan kering namun berpengaruh tidak signifikan terhadap jumlah barisan biji per tongkol.

Tabel 4. Rata-rata panjang tongkol, lingkar tongkol, jumlah barisan biji per tongkol, dan bobot biji jagung pipilan kering pada perlakuan kombinsi paket pemupukan organik-hayati dengan pupuk SP-36

Perlakuan Kombinasi Sumber Pupuk P	Panjang Tongkol (cm)	Lingkar Tongkol (cm)	Jumlah Barisan Biji per Tongkol (baris)	Bobot Biji Jagung Pipilan Kering Per Tanaman (g/tanaman)
Tanpa aplikasi pupuk (P0)	18,26 a	12,44 a	14,33 a	78,03 a
PPOH + 0 kg/ha SP-36(P1)	26,83 b	14,78 b	14,67 a	141,13 b
PPOH + 50 kg/ha SP-36 (P2)	27,10 b	14,87 b	14,67 a	141,30 b
PPOH + 100 kg/ha SP-36 (P3)	27,13 b	15,20 b	14,67 a	147,97 b
PPOH + 150 kg/ha SP-36 (P4)	27,60 b	15,78 b	15,67 a	146,00 b
PPOH + 200 kg/ha SP-36 (P5)	28,53 b	15,27 b	16,33 a	143,87 b
PPOH + 250 kg/ha SP-36 (P6)	25,90 b	15,45 b	15,67 a	141,62 b

Keterangan: angka-angka yang diikuti oleh huruf yang sama adalah berbeda tidak nyata pada uji DMRT 5%

Hasil analisis (Tabel 4.) menunjukkan, ukuran tongkol (panjang dan lingkar tongkol) yang paling rendah dijumpai pada perlakuan tanpa aplikasi pupuk (P0) berkaitan dengan rendahnya kandungan hara (termsuk hara P) di dalam tanah sehingga tanaman sehingga tanaman relatif mengalami hambatan dalam pertumbuhannya yang berdampak pada hasil tanaman yang rendah. Tanaman terlihat memberikan respon peningkatan ukuran tongkol secara nyata akibat aplikasi paket pemupukan organik-hayati (P1). Selanjutnya, penambahan pupuk SP-36 dengan dosis 50 kg/ha (P2) hingga 250 kg/ha ternyata tidak mampu meningkatkan ukuran tongkol secara signifikan.

Variabel jumlah barisan biji per tongkol sangat ditentukan oleh ukuran lingkar tongkol. Semakin besar lingkar tongkol jumlah barisan biji yang terbentuk akan semakin banyak. Pada penelitian ini aplikasi pemupukan organik-hayati yang dikombinasikan dengan pupuk SP-36 secara umum mampu meningkatan lingkar tongkol yang dihasilkan namun peningkatan lingkar tongkol tersebut belum mampu meningkatkan jumlah barisan biji per tongkol secara signifikan. Jumlah barisan biji terendah dicapai pada perlakuan tanpa aplikasi pupuk

(P0) sebanyak 14,33 baris. Aplikasi paket pemupukan organik-hayati yang dikombinasikan dengan pupuk SP-36 menyebabkan terjadinya peningkatan jumlah baris per tongkol maksimal menjadi 16,33 baris pada perlakuan PPOH + 200 kg/ha SP-36 (P5). Secara statistik peningkatakan jumlah barisan biji per tongkol tersebut terjadi secara tidak signifikan.

Analisis DMRT 5% pada variabel bobot biji jagung pipilan kering (Tabel 4.) memperlihatkan hasil yang sejalan dengan parameter panjang tongkol dan ukuran tongkol. Bobot bii jagung pipilan kering terendah dijumpai pada perlakuan tanpa aplikasi pupuk yakni 78,03 g/tanaman berkaitan dengan tidak terpenuhinya kebutuhan hara tanaman (terutama hara P) sebagai dampak rendahnya ketersediaan hara pada perlakuan tersebut. Bobot biji jagung pipilan kering terlihat mengalami peningkatan secara signifikan akibat aplikasi PPOH + 0 kg/ha SP-36 (P1) menjadi 141,13 g/tanaman. Selanjutnya, penambahan pupuk SP-36 dengan dosis 50 kg/ha (P2) hingga 250 tidak menyebabkan terjadinya peningkatan bobot biji jagung pipilan kering secara signifikan. Kondisi ini dapat memberikan gambaran tercukupinya kebutuhan hara P bagi tanaman jagung

dari aplikasi pupuk organik-hayati. Dalam hal ini, aplikasi pupuk organik-hayati berupa 7,5 ton/ha pupuk kandang sapi + 15 ton/ha pupuk hijau kirinyu dan 50 spora FMA mampu menggantikan peran pupuk P-anorganik dalam menyediakan dan meningkatkan serapan hara P dan hasil jagung pada Calcarosol. Tercukupinya kebutuhan hara P akibat aplikasi paket pemupukan organik-hayati (P1) menyebabkan penambahan pupuk SP-36 dengan dosis 50 kg/ha hingga 250 kg/ha tidak menyebabkan terjadinya peningkatan bobot biji jagung pipilan kering secara signifikan.

Peran pupuk organik-hayati dalam meningkatkan ketersediaan dan serapan hara P terjadi melalui sumbangan langsung hara P yang terkandung dalam pupuk kandang sapi dan pupuk hijau kirinyu serta adanya modifikasi daerah perakaran (rhizosfer) tanaman jagung oleh mikoriza yang memungkinkan proses penyerapan hara P menjadi lebih maksimal. Kandungan hara P pada pupuk kandang sapi dan pupuk hijau kirinyu masingmasing adalah 0,61 % untuk pupuk kandang sapi (Wiryanta dan Bernadinus, 2002 dalam Andayani & La Sarido, 2013) dan 0,56 % untuk pupuk hijau kirinyu (Setiawan, 2014). Berdasarkan nilai ini maka jumlah hara P yang disuplay ke dalam tanah melalui aplikasi 7,5 ton/ha pupuk kandang sapi dan 15 ton/ha pupuk hijau kirinyu adalah 129,75 kg/ha. Jumlah ini setara dengan aplikasi pupuk SP-36 sebanyak 360,41 Bobot biji jagung pipilan kering yang dihasilkan pada perlakuan paket pemupukan organik hayati tersebut adalah 141,13 g/tanaman atau setara dengan 5,65 ton/ha (asumsi jarak tanam jagung adalah 50 cm x 50 cm). Hasil ini tergolong tinggi jika dibandingkan dengan rata-rata produktivitas jagung di NTT yang hanya mencapai 2,63 ton/ha. Beberapa penelitian menunjukkan hasil yang sejalan dengan penelitian ini. Hasil penelitian Ridwan & Ariani (2020) menunjukkan, aplikasi pupuk kandang dan pupuk organik hayati dapat mengoptimalkan pertumbuhan dan produksi umbi taka sehingga penggunakan pupuk anorganik dapat ditekan hingga 50% dari dosis anjuran. Bedanya, pada penelitian ini dengan diaplikasikannya pupuk organik hayati berupa pupuk kandang sapi, pupuk hijau kirinyu dan pupuk hayati mikoriza, penggunaan pupuk Panorganik dapat ditekan hingga 100% pada musim tanam pertama pasca aplikasi.

SIMPULAN DAN SARAN

Simpulan

Kesimpulan yang dapat ditarik dari hasil penelitian ini adalah:

- Perlakuan aplikasi paket pemupukan organikhayati yang dikombinasikan dengan pupuk SP-36 berpengaruh sangat nyata terhadap variabel kandungan hara P-jaringan tanaman, tinggi tanaman, total luas daun per tanaman, panjang tongkol, lingkar tongkol dan bobot biji jagung pipilan kering, namun berpengaruh tidak nyata terhadap variabel jumlah barisan biji per tongkol.
- Kandungan P jaringan tanaman jagung pada perlakuan PPOH + 50 kg/ha SP-36 yang tidak berbeda secara signifikan dengan perlakuan PPOH + 250 kg/ha SP-36 membuktikan bahwa dengan aplikasi PPOH, penggunaan pupuk SP-36 dapat dikurangi hingga 80% dari dosis yang umum digunakan oleh petani untuk memenuhi kebutuhan hara P tanaman.
- 3. Bobot biji pipilan kering jagung pada perlakuan PPOH + 0 kg/ha yang tidak berbeda secara signikan dengan perlakuan PPOH + 250 kg/ha SP-36 membuktikan bahwa aplikasi PPOH mampu mensubtitusi penggunaan pupuk SP-36 di tanah Calcarosol pada musim tanam pertama pasca aplikasi.

Saran

Aplikasi pupuk organik hayati dapat memberikan pengaruh jangka panjang terhadap pertumbuhan tanaman sehingga disarankan untuk dilakukan penelitian lanjutan pada beberapa musim tanam untuk melihat pengaruh residu kombinasi paket pemupukan organik-hayati dengan pupuk SP-36 terhadap peningkatan serapan hara P dan hasil jagung pada Calcarosol di Timor Barat.

DAFTAR PUSTAKA

Aisyah, A, IW Suastika dan R Suntari. 2015. Pengaruh beberapa pupuk sulfur terhadap residu, serapan, serta produksi jagung di mollisol Jonggol, Bogor, Jawa Barat. Jurnal Tanah dan Sumberdaya Lahan. 2(1): 93-101.

Andayani, dan La Sarido. 2013. Uji empat jenis pupuk kandang terhadap pertumbuhan dan hasil tanaman cabai keriting (*Capsicum annum L.*). Jurnal Agrifor. XII(1): 22-29.

Arifin, Z, LE Susilowati, BH Kusumo, dan M Ma'shum. 2021. Potensi pupuk hayati fosfat

- dalam mengefisiensi penggunaan pupuk P-Anorganik pada tanaman jagung. Prosiding Saintek "Teknologi dan rekayasa ilmu pengetahuan berkelanjutan menuju era new normal" LPPM Universitas Mataram. Mataram. Hlm. 545-554
- Bako, PO, dan DYL Serangmo. 2018. Alternatif pengelolaan hara fosfor (P) pada budidaya jagung di lahan kering berkapur pulau Timor dengan memanfaatkan potensi organik lokal. Laporan hasil penelitian Produk Terapan. Fakultas Pertanian. Universitas Nusa Cendana, Kupang.
- Basri, HHB. 2018. Kajian peranan mikoriza dalam bidang pertanian. Agrica Ekstensia. 12(2): 74-78
- [BBLSLP] Balai Besar Litbang Sumberdaya Lahan Pertanian, 2006. U Kurnia, F Agus, A Adimihardja, dan A Dariah (Editor). Sifat fisik tanah dan metode analisisnya. Tersedia online pada http://balittanah.litbang.pertanian.go.id/ind/d okumentasi/juknis/sifat_fisik_tanah_dan_met ode_analisisnya.pdf. Diakses 3 Maret 2022.
- Bingham, AH, and MF Cotrufo. 2016. Organic nitrogen storage in mineral soil: Impliactions for policy and management. Science of the Total Environment 551-552: 116-126.
- [BPS] Badan Pusat Statistik Provinsi NTT. 2020. Perkembangan luas panen, rata-rata produksi, dan produksi jagung di Provinsi Nusa Tenggara Timur tahun 2009-2019. Tersedia online pada https://ntt.bps.go.id/statictable/2020/12/16/804/perkembangan-luas-panen-rata-rata-produksi-dan-produksi-jagung-2009-2019.html. Diakses 2 Maret 2022.
- [BPS] Badan Pusa Statistik Provinsi NTT. 2022. Provinsi Nusa Tenggara Timur dalam angka tahun 2022, Kupang
- [BPS] Badan Pusat Statistik Republik Indonesia. 2022. Analisis produkstivitas jagung dan kedelai di Indonesia, 2021 (Hasil survei ubinan), Jakarta
- [BPS] Badan Pusat Statistik Provinsi NTT. 2022. Populasi ternak besar menurut kabupaten/kota. Tersedia secara online pada https://ntt.bps.go.id/indicator/24/590/1/popul asi-besar-menurut-kabupaten-kota.html. Diakses tanggal 16 Juni 2023.
- Brundrett, M, N Bougher, B Dell, T Grave, and N Malajezuk. 2008. Working with mycorrizha in forestry and agriculture. Australian Centre for

- International Agriculture Research (ACIAR). Canberra.
- Budi, S, dan S Sari. 2015. Ilmu implementasi kesuburan tanah. Universitas Muhamadiyah. Malang Press. Malang.
- Carson, B. 1995. Soils of Eest Timor. Comprehensive Paper Submitted as Partial Fulfillment of Requirement for Master of Science Degree in Soil. pp.1
- Damayani, M. 2014. Pengaruh pemberian macam dan dosis pupuk organic terhadap beberapa sifat kimia tanah, serapan P serta hasil sawi (*Brassica juncea* L.) pada ultisol asal Jatinangor. Soilrens 12(1): 1-6.
- Etesami, H, BR Jeong, and BR Glick. 2021. Contribution of arbuscular mycorrhizal fungi, phosphate-solubilizing bacteria, and silicon to P uptake by plant. Frointiers in Plant Science. 12: 1-29.
- [FAO] Food and Agriculture Organization. 1984.
 Fertilizer and plant nutrition guide. Fertilizer and Plant Nutrition Service, Land and Water Development Division. FAO Fertilizer and Plant Nutrition Bulletin 9. Rome.175 pages.
- Hafizah, N, dan R Mukkarramah. 2017. Aplikasi pupuk kandang kotoran sapi pada pertumbuhan dan hasil tanaman cabai rawit (*Capsicum frustescens* L) di lahan rawa Lebak. Ziraa'ah. 22(1): 1-7.
- Hardjowigeno, S. 2007. Ilmu tanah. Akademi Pressindo. Jakarta.
- Herlangga, R, UK Rusmarini, dan ER Setyawati. 2017.

 Dosis *Chromolaena odorata* sebagai pupuk hijau pada berbagai macam jenis tanah dan pengaruhnyaterhadap pertumbuhan bibit kelapa sawit di pre-nursery. Agromast. 2(2): 2017.
- Heryani, N, dan P Rejekiningrum. 2019. Pengembangan pertanian lahan kering iklim kering melalui implementasi panca kelola lahan. Jurnal Sumberdaya Lahan 13(2): 63-71.
- Jusman, AT, Yulistriani, dan Warnita. 2021. Aplikasi pupuk hijau kirinyuh pada pembibitan tanaman kakao (*Theobroma cacao* L.). Jurnal Agrohita. 6(2):310-317.
- Lombin, LG, JA Adepetu, and KA Ayolade. 1991.

 Complementary use of organic manure and inorganic fertilizer in arable crop production.

 In: Lombin, LG, JA Adepetu, and KA Ayolade, Eds., Organic fertiliser in the nigeria agriculture: Present and Future, Proceedings of National Organic Fertilizer Seminar, Zaria,

- Federal Ministry of Science and Technology. Abuja, 146-162.
- Moelyohadi, Y, MU Harun, M Munander, dan NR Hayati. 2013. Pengaruh kombinasi pupuk organik dan hayati terhadap pertumbuhan dan produksi galur jagung (*Zea mays.* L) hasil seleksi efisiensi hara pada lahan kering marginal. Jurnal Lahan Suboptimal. 2(2): 100-110.
- Nugroho, B, W Mildaryani, dan SHC Dewi. 2019. Potensi gulma siam (*Chromolaena odorata* L.) sebagai bahan kompos untuk pengembangan bawang merah organik. J. Agron Indonesia. 42(2): 180-187
- [PPPTP] Pusat Penelitian dan Pengembangan Tanaman Pangan. 2012. Deskripsi Varietas Unggul Tanaman Jagung. Badan Pengembangan Pertanian. Kementerian Pertanian, Jakarta. Tersedia online pada http://balitsereal.litbang.pertanian.go.id/wp.c ontent/uploads/2016/11/des2012a.pdf. Diakses 2 Maret 2022.
- Rahmawati, ID, KI Purwani, dan A Muhibuddin. 2018. Pengaruh konsentrasi pupuk P terhadap tinggi dan panjang akar *Tagetes erecta* L. (Marigold) terinfeksi mikoriza yang ditanam secara hidroponik. Jurnal Sains dan Seni ITS. 7(2): E42-E46.
- Ridwan, W, dan D Ariani. 2020. Kombinsi pupuk organik dan anorganik untuk optimalisasi produksi dan kandungan nutrisi umbi taka. Jurnal Argon Indonesia. 48(2):150-156.

- Rini, MV, L Andryyani, dan MAS Arif. 2020. Daya infeksi dan efektivitas fungi mikoriza arbuskular Gigaspora margarita pada tanaman jagung dengan masa simpan yang berbeda. Jurnal Agrotek Tropika. 1(3): 453-459.
- Saputro, DD, BR Wijaya, dan Y Wijawanti. 2014. Pengolahan limbah peternakan sapi untuk meningkatkan kapasitas produksi pada Kelompok Ternak Patra Sutera. Rekayasa 12(2): 91-98.
- Sastrosupadi, A. 2007. Rancangan percobaan praktis bidang pertanian. Kanisius. Yogyakarta.
- Setiawan, A, H Ellya, H Halim, dan Murikajah. 2014. Pengaruh beberapa konsentrasi ekstrak Daun kirinyu (*Chromolaena odorata* L.) terhadap pertumbuhan dan hasil tanaman bawang daun (*Allium Fistulosim* L.). PolhaSains. 2(2): 7 11
- Taalab, AS, GW Ageeb, HS Siam, and SA Mahmoud. 2019. Some characteristics of calcareous soils. Middle East Journal of Agriculture Research. 08(1): 96-105.
- Taisa, R, T Purba, Sakiah, J Herawati, AS Junaedi, HS Hasibuan, Junairiah, dan R Firgiyanto. 2021.Ilmu kesuburan tanah dan pemupukan. Yayasan Kita Menulis. Medan.
- Tejakusuma, IG, EH. Sittadewi, T Handayani, T Hernaningsih, W Wisyanto, and A Rifai. 2023. Root growth and arbuscular mycorrhizal fungi on woody plants for vegetative stabilization on tropical slopes. Global Journal of Environmental Science and Management. 10(1): 1-20