Near-Infrared Genggam untuk Penilaian Mutu Minyak Ikan dari Mata Tuna Beku
Abstrak
Mutu minyak ikan kaya docosahexaenoic acid (DHA) memiliki keterkaitan yang signifikan dengan bahan baku mata tuna. Penanganan dan penyimpanan beku mata tuna masih dihadapkan pada kondisi yang belum optimal dan membutuhkan kepraktisan akan analisis terhadap kandungan minyak ikan. Near-infrared (NIRS) genggam menjadi alternatif potensial dalam menganalisis minyak ikan seiring perkembangan perangkat seluler modern. Tujuan penelitian adalah menentukan mutu (asam lemak bebas, bilangan peroksida) dan kandungan asam lemak minyak ikan dari mata tuna dengan kondisi penyimpanan beku menggunakan NIRS genggam. Penelitian mencakup penentuan karakteristik mata tuna pada kondisi penyimpanan beku, dilanjutkan dengan ekstraksi dan analisis mutu (asam lemak bebas, bilangan peroksida) serta kandungan asam lemak minyak ikan. Data yang diperoleh dikorelasikan dengan spektrum NIRS gengam menggunakan model kuadrat terkecil parsial (PLS). Hasil penelitian menunjukkan bahwa kandungan asam lemak bebas dan bilangan peroksida minyak ikan pada penyimpanan beku mata tuna 6 bulan adalah 8,39±3,47 % dan 180,3±13,31 mEq O2/kg, sementara pada penyimpanan beku 12 bulan adalah 3,43±0,69% dan 149,9±30,59 mEq O2/kg. Kandungan DHA minyak ikan pada kondisi penyimpanan beku mata tuna masihtetap tinggi, yaitu 25,49±0,03 % dan 26,16±1,30 %. Near-infrared genggam memberikan penilaian dan informasi relevan terhadap mutu minyak ikan dari kondisi penyimpanan beku mata tuna, sebagaimana ditunjukkan dengan nilai korelasi R2-Pearson DHA dan EPA, yaitu 0,98, serta nilai root mean squared error-RMSE untuk kalibrasi DHA adalah 0,08 dan EPA 0,02, sedangkan RMSE validasi DHA adalah 0,12 dan EPA 0,04.
Kata Kunci
Teks Lengkap:
PDFReferensi
Afseth, N. K., Dankel, K., Andersen, P. V., Difford, G. F., Horn, S. S., Sonesson, A., Hillestad, B., Wold, J. P., & Tengstrand, E. (2022). Raman and near Infrared Spectroscopy for Quantification of Fatty Acids in Muscle Tissue—A Salmon Case Study. Foods, 11(7), 962. https://doi.org/10.3390/foods11070962.
Ahmed, R., Haq, M., Cho, Y. J., & Chun, B. S. (2017). Quality evaluation of oil recovered from by-products of bigeye tuna using supercritical carbon dioxide extraction. Turkish Journal of Fisheries and Aquatic Sciences, 17(4), 663-672. https://doi.org/10.4194/1303-2712-v17_4_02
[AOAC] Association of Official Analytical Chemist. (2012). Official Method of Analysis of Fatty Acids in Oils and Fats. Virginia (US): AOAC Inc.
[BSN] Badan Standardisasi Nasional. (2006). SNI 2346-2006 tentang Petunjuk Pengujian dan atau Sensori. Jakarta (ID) : Badan Standardisasi Nasional.
[BSN] Badan Standardisasi Nasional. (2014). SNI 4110-2014 tentang Ikan Beku. Jakarta (ID) : Badan Standardisasi Nasional.
[BSN] Badan Standardisasi Nasional. (2018). SNI 8392.1-2018 tentang Penentuan Kadar Asam Lemak Bebas Dengan Metode Titrasi Alkalimetri. Jakarta (ID): Badan Standardisasi Nasional.
[BSN] Badan Standardisasi Nasional. (2018). SNI 8392.2-2018 tentang Penentuan Bilangan Peroksida Pada Minyak Ikan Dengan Metode Titrasi Iodometri. Jakarta (ID): Badan Standardisasi Nasional.
Bu, Y., Han, M., Tan, G., Zhu, W., Li, X., & Li, J. (2022). Changes in quality characteristics of southern bluefin tuna (Thunnus maccoyii) during refrigerated storage and their correlation with color stability. LWT, 154, 112715. https://doi.org/10.1016/j.lwt.2021.112715
[CAC] Codex Alimentarius Commision. (2017). Standard for Fish Oils CODEX STAN 329-2017. Roma (IT): Food and Agriculture Organization of the United Nations.
Cascant, M. M., Breil, C., Fabiano-Tixier, A. S., Chemat, F., Garrigues, S., & de La Guardia, M. (2018). Determination of fatty acids and lipid classes in salmon oil by near infrared spectroscopy. Food chemistry, 239, 865-871. https://doi.org/10.1016/j.foodchem.2017.06.158
Chakma, S., Rahman, M. A., Mali, S. K., Debnath, S., Hoque, M. S., & Siddik, M. A. (2022). Influence of frozen storage period on the biochemical, nutritional, and microbial quality of Skipjack tuna (Katsuwonus pelamis) collected from the Bay of Bengal coast of Bangladesh. Food Chemistry Advances, 1, 100139. https://doi.org/10.1016/j.focha.2022.100139
Chantachum, S., Benjakul, S., & Sriwirat, N. (2000). Separation and quality of fish oil from precooked and non-precooked tuna heads. Food chemistry, 69(3), 289-294. https://doi.org/10.1016/S0308-8146(99)00266-6
De Oliveira, D. A., Minozzo, M. G., Licodiedoff, S., & Waszczynskyj, N. (2016). Physicochemical and sensory characterization of refined and deodorized tuna (Thunnus albacares) by-product oil obtained by enzymatic hydrolysis. Food Chemistry, 207, 187-194. https://doi.org/10.1016/j.foodchem.2016.03.069
Dordevic, D., Gablo, N., Dordevic Janickova, S., & Tremlova, B. (2023). Effects of Centrifugation on the Oxidative Stability and Antioxidant Profile of Cold-Pressed Rapeseed Oil during Storage. Processes, 11(7), 2224. https://doi.org/10.3390/pr11072224
Duarte, A. M., Silva, F., Pinto, F. R., Barroso, S., & Gil, M. M. (2020). Quality assessment of chilled and frozen fish-mini review. Foods, 9(12), 1739. https://doi.org/10.3390/foods9121739
Ferdosh, S., Sarker, Z. I., Norulaini, N., Oliveira, A., Yunus, K., Chowdury, A. J., Akanda, J., & Omar, M. (2015). Quality of tuna fish oils extracted from processing the by‐products of three species of neritic tuna using supercritical carbon dioxide. Journal of Food Processing and Preservation, 39(4), 432-441. https://doi.org/10.1111/jfpp.12248
Gokhan, B., Hikmet, K., & Muhammet, B. (2006). Changes in the qualityof fish oils due to storage temperature and time. Food Chemistry, 98, 663–698. https://doi.org/10.1016/j.foodchem.2005.06.041
Hespanhol, M. C., Souza, J. C., & Pasquini, C. (2020). Feasibility of a portable, low-cost near-infrared spectrophotometer for the quality screening of omega-3 dietary supplements. Journal of Pharmaceutical and Biomedical Analysis, 189, 113436. https://doi.org/10.1016/j.jpba.2020.113436
Jeong, D. H., Kim, M. J., Kang, B. K., & Ahn, D. H. (2016). Skipjack tuna (Katsuwonus pelamis) eyeball oil exerts an anti-inflammatory effect by inhibiting NF-κB and MAPK activation in LPS-induced RAW 264.7 cells and croton oil-treated mice. International Immunopharmacology, 40, 50-56. https://doi.org/10.1016/j.intimp.2016.07.005
Karunathilaka, S. R., Choi, S. H., Mossoba, M. M., Yakes, B. J., Brückner, L., Ellsworth, Z., & Srigley, C. T. (2019). Rapid classification and quantification of marine oil omega-3 supplements using ATR-FTIR, FT-NIR and chemometrics. Journal of Food Composition and Analysis, 77, 9-19. https://doi.org/10.1016/j.jfca.2018.12.009
Kazuo, M. (2019). Prevention of fish oil oxidation. Journal of oleo science, 68(1), 1-11. https://doi.org/10.5650/jos.ess18144
Mardjan, S. S., & Indriyantoro, J. (2022). Detection of Chilling Injury Symptoms of Salak Pondoh Fruit during Cold Storage with Near Infrared Spectroscopy (NIRS). Jurnal Keteknikan Pertanian, 10(1), 69-76. https://doi.org/10.19028/jtep.010.1.69-76
Nakazawa, N., & Okazaki, E. (2020). Recent research on factors influencing the quality of frozen seafood. Fisheries Science, 86, 231-244. https://doi.org/10.1007/s12562-020-01402-8.
Nogueira, M. S., Scolaro, B., Milne, G. L., & Castro, I. A. (2019). Oxidation products from omega-3 and omega-6 fatty acids during a simulated shelf life of edible oils. Lwt, 101, 113-122. https://doi.org/10.1016/j.lwt.2018.11.044
Oliver, L., Dietrich, T., Marañón, I., Villarán, M. C., & Barrio, R. J. (2020). Producing omega-3 polyunsaturated fatty acids: A review of sustainable sources and future trends for the EPA and DHA market. Resources, 9(12), 148. https://doi.org/10.3390/resources9120148
Pudtikajorn, K., & Benjakul, S. (2020). Simple wet rendering method for extraction of prime quality oil from skipjack tuna eyeballs. European Journal of Lipid Science and Technology, 122(8), 2000077. https://doi.org/10.1002/ejlt.202000077
Ramalhosa, M. J., Paíga, P., Morais, S., Alves, M. R., Delerue-Matos, C., & Oliveira, M. B. P. P. (2012). Lipid content of frozen fish: Comparison of different extraction methods and variability during freezing storage. Food Chemistry, 131(1), 328-336. https://doi.org/10.1016/j.foodchem.2011.07.123
Renuka, V., Zynudheen, A. A., Panda, S. K., & Ravishankar, C. N. R. (2017). Studies on chemical composition of yellowfin tuna (Thunnus albacares, Bonnaterre, 1788) eye. Journal of food science and technology, 54, 1742-1745. https://doi.org/10.1007/s13197-017-2539-2
Rohman, A., Putri, A. R., Windarsih, A., Nisa, K., & Lestari, L. A. (2021). The employment of analytical techniques and chemometrics for authentication of fish oils: A review. Food Control, 124, 107864. https://doi.org/10.1016/j.foodcont.2021.107864
Santos, D. A. D., Coqueiro, A., Gonçalves, T. R., Carvalho, J. C., Bezerra Jr, J. S., Matsushita, M., de Oliveira, C. A. L., Março, P. H., Valderrama P., & Ribeiro, R. P. (2020). Omega-3 and omega-6 determination in nile Tilapia’s fillet based on MicroNIR spectroscopy and multivariate calibration. Journal of the Brazilian Chemical Society, 31, 1883-1890. https://doi.org/10.21577/0103-5053.20200082.
Šimat, V., Vlahović, J., Soldo, B., Mekinić, I. G., Čagalj, M., Hamed, I., & Skroza, D. (2020). Production and characterization of crude oils from seafood processing by-products. Food Bioscience, 33, 100484. https://doi.org/10.1016/j.fbio.2019.100484
Sohn, J. H., & Ohshima, T. (2010). Control of lipid oxidation and meat color deterioration in skipjack tuna muscle during ice storage. Fisheries Science, 76, 703-710. https://doi.org/10.1007/s12562-010-0248-0
Tenyang, N., Tiencheu, B., Tonfack Djikeng, F., Morfor, A. T., & Womeni, H. M. (2019). Alteration of the lipid of red carp (Cyprinus carpio) during frozen storage. Food science & nutrition, 7(4), 1371-1378. https://doi.org/10.1002/fsn3.971
Trilaksani, W., Riyanto, B., Nurhayati, T., Santoso, J., & Kurniawan, I. A. H. (2021). Integrasi sentrifugasi suhu rendah dengan optimasi ekstraksi enzimatis minyak mata tuna menggunakan response surface methodology. Jurnal Pengolahan Hasil Perikanan Indonesia, 24(3), 395-406. https://doi.org/10.17844/jphpi.v24i3.36652
Widyaningrum, W., Purwanto, Y. A., Widodo, S., & Iriani, E. S. (2022). Portable/Handheld NIR sebagai Teknologi Evaluasi Mutu Bahan Pertanian secara Non-Destruktif. Jurnal Keteknikan Pertanian, 10(1), 59-68. https://doi.org/10.19028/jtep.010.1.59-68
Xu, J. L., Riccioli, C., & Sun, D. W. (2015). An overview on nondestructive spectroscopic techniques for lipid and lipid oxidation analysis in fish and fish products. Comprehensive Reviews in Food Science and Food Safety, 14(4), 466-477. https://doi.org/10.1111/1541-4337.12138
Zhang, J., Tao, N., Zhao, Y., Wang, X., & Wang, M. (2019). Comparison of the fatty acid and triglyceride profiles of big eye tuna (Thunnus obesus), Atlantic salmon (Salmo salar) and bighead carp (Aristichthysnobilis) heads. Molecules, 24(21), 3983. https://doi.org/10.3390/molecules24213983
Zhang, Y., Sun, Q., Liu, S., Wei, S., Xia, Q., Ji, H., Deng, C., & Hao, J. (2021). Extraction of fish oil from fish heads using ultra-high pressure pre-treatment prior to enzymatic hydrolysis. Innovative Food Science & Emerging Technologies, 70, 102670. https://doi.org/10.1016/j.ifset.2021.102670
Zhu, Z., Zhou, Q., & Sun, D. W. (2019). Measuring and controlling ice crystallization in frozen foods: A review of recent developments. Trends in Food Science & Technology, 90, 13-25. https://doi.org/10.1016/j.tifs.2019.05.012
DOI: https://doi.org/10.24198/jaki.v9i1.48406
Refbacks
- Saat ini tidak ada refbacks.
##submission.copyrightStatement##
##submission.license.cc.by-nc-nd4.footer##
Jurnal Ini Terindeks di:
Penerbit:
Fakultas Ilmu Perikanan dan Ilmu Kelautan Universitas Padjadjaran
Jl. Raya Bandung-Sumedang KM. 21 Jatinangor