Flow dynamics of unsteady pyroclastic density currents (PDC) from Sunda ignimbrite, West Java, Indonesia

Ilmi Ramadhan, Syahreza Saidina Angkasa, Rio Priandri Nugroho

Abstrak


Sunda Volcano is the one of several volcanoes in Indonesia which produced ignimbrite deposit from caldera forming eruption. Depending on the volume and considerable thickness of the deposits, Sunda ignimbrite might has been deposited with a variety of flow mechanisms. Heterogeneous deposition mechanism will heavily controlled by numerous parameters such as velocity, rheology, types of flow-boundary zone, or pre-existing topographic influence. According to the deposition parameters, Pleistocene Sunda ignimbrite transportation and deposition mechanisms are still unclear. Here we show detailed observations of each facies and the Unconformity Bounded Stratigraphic Units (UBSU) approach to determine the flow sub-units and flow mechanism of the Sunda ignimbrite. Overall, we found that Sunda ignimbrite consists of five different facies. Forestepping stacking pattern from Sunda ignimbrites also observed from stratigraphic correlation indicates that energy instability occurred during transport and deposition in the PDC. Waxing energy of PDC which occured is caused by the development of granular-flow and fluid-escape dominated flow-boundary zone at the base and body of emplaced PDC. Our results demonstrate how Sunda ignimbrite emplacement mechanism can be affects by pre-existing topography which developed during the effusive eruption of Sunda Volcano. Furthermore, we also found that Sunda ignimbrite deposition has been changed the topography into the gentler relief due to this forestepping pattern of each ignimbrite units. The study of Sunda ignimbrite facies can reveal suitable hazard mitigation and also use to characterize heterogenity in groundwater aquifers and geothermal reservoirs. Moreover, detailed facies analysis and UBSU could give us informations on how explosive eruption at 0.205 M.a take places on the southern flank of Sunda Volcano.

Teks Lengkap:

PDF (English)

Referensi


Angkasa, S. S., Ohba, T., Imura, T., Setiawan, I., & Rosana, M. F. (2019). Tephra-stratigraphy and ash componentry studies of proximal volcanic products at mount Tangkuban Parahu, Indonesia: An insight to holocene volcanic activity. Indonesian Journal on Geoscience, 6(3), 235–253. https://doi.org/10.17014/ijog.6.3.235-253

Arnott, R. W. C., & Hand, B. M. (1989). Bedforms, Primary Structures and Grain Fabric in the Presence of Suspended Sediment Rain. SEPM Journal of Sedimentary Research, 59(6), 1062–1069. https://doi.org/10.1306/212F90F2-2B24-11D7-8648000102C1865D

Báez, W., de Silva, S., Chiodi, A., Bustos, E., Giordano, G., Arnosio, M., Suzaño, N., Viramonte, J. G., Norini, G., & Groppelli, G. (2020). Pulsating flow dynamics of sustained, forced pyroclastic density currents: insights from a facies analysis of the Campo de la Piedra Pómez ignimbrite, southern Puna, Argentina. In Bulletin of Volcanology (Vol. 82, Issue 7). Bulletin of Volcanology. https://doi.org/10.1007/s00445-020-01385-5

Bagnold, R. A. (1962). Auto-Suspension of Transported Sediment ; Turbidity Currents. Proceedings of The Royal Society A, 265(1322), 315–319. https://doi.org/10.1098/rspa.1962.0012

Branney, M. J., & Kokelaar, P. (1994). Volcanotectonic faulting, soft-state deformation, and rheomorphism of tuffs during development of a piecemeal caldera, English Lake District. Geological Society of America Bulletin, 106(4), 507–530. https://doi.org/10.1130/0016-7606(1994)106<0507:VFSSDA>2.3.CO;2

Branney, M. J., & Kokelaar, P. (2002). Pyroclastic density currents and the sedimentation of ignimbrites. The Geological Society. https://doi.org/10.1144/GSL.MEM.2003.027

Cas, R. A. F., & Wright, J. V. (1987). Volcanic Successions (Modern and Ancient). Springer Netherlands. https://doi.org/10.1007/978-94-009-3167-1

Dellino, P., & La Volpe, L. (2000). Structures and grain size distribution in surge deposits as a tool for modelling the dynamics of dilute pyroclastic density currents at La Fossa di Vulcano (Aeolian Islands, Italy). Journal of Volcanology and Geothermal Research, 96(1–2), 57–78. https://doi.org/10.1016/S0377-0273(99)00140-7

Fisher, R. V., Orsi, G., Ort, M., & Heiken, G. (1993). Mobility of a large-volume pyroclastic flow - emplacement of the Campanian ignimbrite, Italy. Journal of Volcanology and Geothermal Research, 56(3), 205–220. https://doi.org/10.1016/0377-0273(93)90017-L

Gerber, T. P., Pratson, L. F., Wolinsky, M. A., Steel, R., Mohr, J., Swenson, J. B., & Paola, C. (2008). Clinoform progradation by turbidity currents: Modeling and experiments. Journal of Sedimentary Research, 78(3–4), 220–238. https://doi.org/10.2110/jsr.2008.023

Ghose, R., Yoshioka, S., & Oike, K. (1990). Three-dimensional numerical simulation of the subduction dynamics in the Sunda arc region, Southeast Asia. Tectonophysics, 181(1–4), 223–255. https://doi.org/10.1016/0040-1951(90)90018-4

Giordano, G. (1998). The effect of paleotopography on lithic distribution and facies associations of small volume ignimbrites: the WTT Cupa (Roccamonfina volcano, Italy). Journal of Volcanology and Geothermal Research, 87(1–4), 255–273. https://doi.org/10.1016/S0377-0273(98)00096-1

Giordano, G. (2005). Reconstructing Facies Architecture and Geometry of Modern and Ancient Volcanic Successions : Case Studies from Lascar Volcano (Chile), Mt. St. Helens (USA) and Roccamonfina Volcano (Italy). Acta Vulcanologica : Journal of the National Volcanic Group of Italy, 17(1–2), 1–10. https://doi.org/10.1400/71616

Hall, R. (2012). Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics, 570–571, 1–41. https://doi.org/10.1016/j.tecto.2012.04.021

Hamilton, W. B. (1979). Tectonics of the Indonesian region. In Professional Paper. https://doi.org/10.3133/pp1078

Kartadinata, M. N. (2005). Tephrochronological study on eruptive history of Sunda-Tangkuban Perahu volcanic complex, west Java, Indonesia. https://ci.nii.ac.jp/naid/500000336634.bib

Kartadinata, M. N., Okuno, M., Nakamura, T., & Kobayashi, T. (2002). Eruptive History of Tangkuban Perahu Volcano, West Java, Indonesia: A Preliminary Report. Journal of Geography (Chigaku Zasshi), 111(3), 404–409. https://doi.org/10.5026/jgeography.111.3_404

McPhie, J., Doyle, M., & Allen, R. (1993). Volcanic textures : a guide to the interpretation of textures in volcanic rocks. In Volcanic textures : a guide to the interpretation of textures in volcanic rocks. Centre for Ore Deposit and Exploration Studies CODES, University of Tasmania.

Moore, I., & Kokelaar, P. (1998). Tectonically controlled piecemeal caldera collapse: A case study of Glencoe volcano, Scotland. Bulletin of the Geological Society of America, 110(11), 1448–1466. https://doi.org/10.1130/0016-7606(1998)110<1448:TCPCCA>2.3.CO;2

Nasution, A., Kartadinata, M. N., Sutamingsih, E., Hadisantono, R., Kadarstia, E., Kobayashi, T., & Siregar, D. (2004). Geology, Age Dating and Geochemistry of the Tangkuban Parahu Geothermal Area, West Java, Indonesia. Journal of the Geothermal Research Society of Japan, 26(3), 285–303. https://doi.org/10.11367/grsj1979.26.285

Pantin, H. M. (1979). Interaction Between Velocity and Effective Density in Turbidity Flow: phase-plane analysis, with criteria for autosuspension. Marine Geology, 31, 59–99. https://doi.org/10.1016/0025-3227(79)90057-4

Parker, G., Fukushima, Y., & Pantin, H. M. (1986). Self-accelerating turbidity currents. Journal of Fluid Mechanics, 171, 145–181. https://doi.org/10.1017/S0022112086001404

Puspito, N. T., & Shimazaki, K. (1995). Mantle structure and seismotectonics of the Sunda and Banda arcs. Tectonophysics, 251(1–4), 215–228. https://doi.org/10.1016/0040-1951(95)00063-1

Rita, D. De, Giordano, G., Milli, S., & Rita, D. De. (1998). Forestepping-backstepping stacking pattern of volcaniclastic successions : Roccamonfina volcano , Italy. Journal of Volcanology and Geothermal Research, 80(1–2), 155–178. https://doi.org/10.1016/S0377-0273(97)00005-X

Rowley, P. J., Roche, O., Druitt, T. H., & Cas, R. (2014). Experimental study of dense pyroclastic density currents using sustained, gas-fluidized granular flows. Bulletin of Volcanology, 76(9), 1–13. https://doi.org/10.1007/s00445-014-0855-1

Sendjaja, Y. A., Kimura, J.-I., & Sunardi, E. (2009). Across-arc geochemical variation of Quaternary lavas in West Java, Indonesia: Mass-balance elucidation using arc basalt simulator model. Island Arc, 18(1), 201–224. https://doi.org/10.1111/j.1440-1738.2008.00641.x

Silitonga, P. . (1973). Geological Map of The Bandung Quadrangle. Geological Survey of Indonesia.

Soetoyo, & Hadisantono, R. D. (1992). Geological Map of Tangkubanparahu Volcano/Sunda Complex Volcano, West Java. Volcanological Survey of Indonesia.

Sparks, R. S. J., Self, S., & Walker, G. P. L. (1973). Products of ignimbrite eruptions. Geology, 1(3), 115–118. https://doi.org/10.1130/0091-7613(1973)1<115:POIE>2.0.CO;2

Sunardi, E., & Kimura, J. (1998). Temporal chemical variations in late Cenozoic volcanic rocks around The Bandung Basin, West Java, Indonesia. Journal of Mineralogy, Petrology and Economic Geology, 93(4), 103–128. https://doi.org/10.2465/ganko.93.103

Valentine, G. A., Buesch, D. C., & Fisher, R. V. (1989). Basal layered deposits of the Peach Springs Tuff, northwestern Arizona, USA. Bulletin of Volcanology, 51(6), 395–414. https://doi.org/10.1007/BF01078808

Widiyantoro, S., & Van Der Hilst, R. (1997). Mantle structure beneath Indonesia inferred from high-resolution tomographic imaging. Geophysical Journal International, 130(1), 167–182. https://doi.org/10.1111/j.1365-246X.1997.tb00996.x

Wilson, C. J. N. (1980). The role of fluidization in the emplacement of pyroclastic claws: An experimental approach. Journal of Volcanology and Geothermal Research, 8(2–4), 231–249. https://doi.org/10.1016/0377-0273(80)90106-7

Wright, J. V., Smith, A. L., & Self, S. (1980). A working terminology of pyroclastic deposits. Journal of Volcanology and Geothermal Research, 8(2–4), 315–336. https://doi.org/10.1016/0377-0273(80)90111-0




DOI: https://doi.org/10.24198/bsc.v19i2.35272

Refbacks

  • Saat ini tidak ada refbacks.


Situs Slot88

slot terpercaya

slot gacor

slot 777

slot maxwin

toto 5000

bandar togel online

slot gacor

slot gacor

Slot Maxwin

togel hk

spaceman slot

slot gacor

Eyangtogel

slot

Coktogel

acgwin

slot888

seributoto

mahjong ways

paristogel

slot gacor

ggsoft

slot gacor

slot bonus new member

slot

pusat4d

dingdongtogel

slot gacor

slot88

slot gacor

slot

untung99

toto slot

situs slot

mahjong ways 2

https://www.jeremydyson.com/

slot gacor

lk21

Kisah Nyata! Dokter Gigi Siti Raih Rp92.350.000 Main Sweet Bonanza X4000 Di MERAKTOTO Berkat Pola Ajaib RTP LIVE PG SOFT Hari Ini

toto macau

toto macau resmi

slot online

https://konserndx13tahun.com/

birutoto

https://www.nightmareshauntedhouse.info/cause

slot thailand

violetslot

slot gacor

Slot88

https://beatthescene.com

https://cottoncandyfshn.com

https://crossedconnections.org

https://gadsdenapartmentguide.com

https://quantifiedscience.com

https://calapihomes.com

https://starloveshop.com

https://breweryshirt.com

https://dailynewspu.com

https://virtdata.net

https://srcvotingsystem.com

https://pekar.pt

https://knr.or.ke

https://pridrex.com

https://aboveboardinsurancebrokers.com

https://sisend.so

https://tashiinternational.com

https://xtremeengineering.co.ke

https://biceven.co.ke

https://crystaltech.so

https://profineconsultants.com

https://kemstores.com

https://elimikasasa.co.ke

https://thedeephollow.com/privacy-policy/

violetslot

birutoto

https://www.nightmareshauntedhouse.info/locndate

slot gacor

bandar online

emasputihtoto

emasputih toto

bandar togel

pasaran toto

emasputihtoto

slot gacor

slot gacor

birutoto

slot777 daftar

emasputihtoto

slot gacor

slot gacor

slot gacor

merahtoto

emasputih toto

agen sportsbook

situs bola

emasputih toto

game slot

situs slot

emasputih toto

agen togel

situs togel

birutoto

https://www.maxdoutdonuts.com/account

emasputihtoto

toto macau

birutoto

slot88

birutoto

https://thefilmlab.org/

ungutoto