LINGKUNGAN PENGENDAPAN PURBA BERDASARKAN SPHENOLITHUS DAN RETICULOFENESTRA KALA MIOSEN PADA FORMASI JAMPANG, CILETUH, JAWA BARAT
Abstrak
Kelimpahan spesies nannofosil berkapur sebagai indikator lingkungan pengendapan purba dan rekonstruksi biokronologi pada umur Miosen telah diobservasi dengan metode semi quantitatif pada Formasi Jampang Anggota Cikarang, Ciletuh, Jawa Barat. Tujuh puluh preparasi nannofossil dari litologi batupasir dengan interval 10 sampai 30 sentimeter diidentifikasi dan kemudian dianalisis paleonvironment dengan teknik estimasi kelimpahan relatif coccoliths (K- r strategic) pada pembesaran 1000 × di mikroskop binokular polarisasi. Kondisi lingkungan purba pada zona oligotropik dicirikan oleh parameter yaitu jumlah produktivitas yang berlimpah dari Reticulofenestra berukuran besar dan kelimpahan dari Speholithus spp. yang relatif. Indikator dengan kondisi sebaliknya disebut eutropik. Berdasarkan 27 spesies yang telah diidentifikasi dan dominasi distribusi warm-water taxa (Sphenolithus spp.), pada Miosen awal Formasi ini terendapkan pada kondisi oligotropik dan temperatur air laut hangat berdasarkan produktivitas Sphenolithus spp. (15-35 %) yang relatif dominan dan menerus selama Miosen awal. Indikator perubahan drastis dari lingkungan purba ditunjukkan dengan perubahan variasi ukuran serta kelimpahan dari Reticulofenestra spp. ukuran kecil (total kelimpahan 75%) dan indikasi kondisi eutrofikasi dengan ketidakhadiran Discoaster serta penurunan jumlah kelimpahan dari Sphenolithus spp. (kurang dari 10%) dengan perubahan dari kondisi oligotropik menjadi eutropik terjadi pada umur 17.721 Ma (NN4).
Teks Lengkap:
PDFReferensi
Agnini, C., Fornaciari, E., Raffi,I., Catanzariti, R., Pälike, H., Backman,J., dan Rio, D. 2014. Biozonation and biochronology of Paleogene calcareous nannofossils from low and middle latitudes. Newsl. Stratigr, 7 (2) : 131-181.
Aubry, M.-P. 1992. Late Paleogene calcareous nannoplankton evolution: A tale of climatic deterioration. In D. R. Prothero & W. A. Berggren (Eds.), Eocene–oligocene climatic and biotic evolution (pp. 272–309). Princeton, NJ: Princeton University Press.
Backman, J., Raffi, I., Rio, D., Fornaciari, E. dan Palike, H. 2012: Biozonation and biochronology of Miocene through Pleistocene calcareous nannofossils from low and middle latitudes. Newsletters on Stratigraphy 45, 221–244.
Bown, P., Lees, J.A., Young, J.R., 2004. Calcareous nannoplankton evolution and diversity through time. In: Thierstein, H.R., Young, J.R. (Eds.), Coccolithophores: From molecu- lar processes to global impact. Springer-Verlag, New York, 481–508.
Bralower, T.J. 2002. Evidence of surface water oligotrophy during the paleocene–eocene thermal maximum: nannofossil assemblage data from ocean drilling program site 690 maud rise, weddell sea. Paleoceanography, 17 : 1-13.
Farida, M., Jaya, A., dan Nugraha, J. 2022. Calcareous Nannofosil Biostratigraphy of Tonasa Formation at Barru River Traverse, South Sulawesi, Indonesia. Indonesian Journal on Geoscience, 9 (3): 371-381.
Fischer, A.G. 1981. Climatic oscillations in the biosphere. M.H. Nitecki (Ed.), Biotic Crises in Ecological and Evolutionary Time, Academic Press, New York, Vol. 103–131.
Flores, J.A., Sierro, F.J., dan Raffi, I. 1995. Evolution of the calcareous nannofossil assemblage as a response to the paleoceanographic changes in the eastern equatorial Pacific Ocean from 4 to 2 Ma (Leg 138, Sites 849 and 852). Proc. Ocean Drill. Progr. Sci. Results, 138:163-176.
Flores, J.A., Bárcena, M.A., dan Sierro, F.J. 2000. Ocean surface and wind dynamics in the Atlantic Ocean off Northwest Africa during the last 140.000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol., 161: 459-478.
Fornaciari, E., Raffi, I., Rio, D., Villa, G., Backman, J., dan G. Olafsson. 1990. Quantitative distribution patterns of Oligocene and Miocene calcareous nannofossils from the western equatorial Indian Ocean. Proceeding of the ODP, Scientific Results, College Station, TX (Ocean Drilling Program), 115 : 237-254.
Haq, B.U., Premoli-Silva, I., dan Lohmann, G.P. 1976. Calcareous plankton paleobiogeographic evidence for major climatic fluctuations in the early Cenozoic Atlantic Ocean. Journal of Geophysical Research, 82:3861-3876.
Imai, R., Sato, T., Chiyonobu, S., dan Iryu, Y. 2020. Reconstruction of Miocene to Pleistocene sea‐surface conditions in the eastern Indian Ocean on the basis of calcareous nannofosil assemblages from ODP Hole 757B. Island Arc, 29.
Martini, E. 1971. Standard tertiary and quaternary calcareous nannoplankton zonation. In: Farinacci, A. (Editor), Proceedings of the second planktonic conference, Rome, 1970, Rome, pp. 737- 785.
Martini, E., Worsley,T. 1970. Standard Neogene calcareous nannoplankton zonation. Nature, 225 :289.
Mejía-Molina,A., Flores, J.A., Torres Torres, V., Sierro, F.J. 2020. Distribution of calcareous nannofossils in upper eocene-upper Miocene deposits from northern Colombia and the Caribbean Sea. Rev. Espanola Micropaleontol, 42 (3): 279-300.
Nannotax3. 2014 website: http://ina.tmsoc.org/ Nannotax3.http://ina.tmsoc.org/Nannota x3. Date accessed: 29/11/2022.
Okada, H. & Bukry, D. 1980. Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation (Bukry, 1973; 1975). Marine Micropaleontology 5: 321–325.
Okada, H., dan McIntyre, A. 1979.. Seasonal distribution of modern coccolithophores in the western North Atlantic Ocean. Marine Biology, 54(4): 319–328.
Pratiwi, S.D., Chiyonobu,S., dan Rosana, M.F. 2022. Identifikasi Umur Formasi Jampang Anggota Cikarang Berdasarkan Kumpulan Nannofosil Gampingan di Sungai Cikarang, Geopark Ciletuh Pelabuhanratu. Bulletin of Scientific Contribution: GEOLOGY, 20 (3): 137-142.
Pratiwi, S. D., dan Sato, T. 2016.. Reconstruction of paleoceanography signifi- cance in the Western Pacific and Atlantic oceans during the neogene based on calcareous nannofossil productivity and size variations, related to the global tectonic events. Open Journal of Geology, 6: 931–943.
Perch-Nielsen, K. 1985. Cenozoic calcareous nannofossils. In Bolli, H.M., Saunders, J.B. & Perch-Nielsen, K. (eds): Plankton Stratigraphy, 427–554. Cambridge University Press, Cambridge.
Raffi, I., dan Flores, J. A. 1995. Pleistocene through Miocene calcareous nannofossils from eastern equatorial Pacific Ocean (Leg 138). In N. G. Pisias, L. A. Mayer, T. R. Janecek, A. Palmer-Julson, & T. H. van Andel (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 138, pp. 233–286). College Station, TX: Ocean Drilling Program.
Rosana, M. F. 2006. Geologi Kawasan Ciletuh Sukabumi : Karakteristik, Keunikan, dan Implikasinya. Bandung: Universitas Padjadjaran.
Sato, T. dan Chiyonobu, S. 2013. Manual of Microfossil Study. Asakura Publishing Co., Ltd., Japan, 108. Science, 292: 686-693.
Sato, T., Yuguchi, S., Takayama, T., dan Kameo, K. 2004. Drastic change in the geographical distribution of the cold-water nannofossil Coccolithus pelagicus (Wallich) Schiller at 2.74 Ma in the late Pliocene, with special reference to glaciation in the Arctic Ocean. Marine Micropaleontology, 52: 181–193.
Sukamto. 1975. Peta Geologi Regional Lembar Jampang dan Balekambang Skala 1 : 100.000. Bandung : Direktorat Geologi Pusat Survey Geologi Indonesia.
Wade,B.S.,dan Pälike, H. 2004. Oligocene climate dynamics. Paleoceanography, 19 (4019) : 1-16.
Wells, P., dan Okada, H. 1997. Response of nannoplankton to major changes in sea-surface temperature and movements of hydrological fronts over Site DSDP 594 (south Chatham Rise, southeastern New Zealand), during the last 130 kyr. Marine Micropaleontology, 32: 341–363.
Winarto, J.B., 2022. Paleogeomorfologi Formasi Cibodas dan Catatan Temuan Fosil Gigi Hiu di Daerah Gunung Sungging dan Sekitarnya, Kabupaten Sukabumi, Jawa Barat. Jurnal Geologi dan Sumberdaya Mineral, 23 (1): 61-69.
Young, J. R. 1998. Neogene. In: Bown, P.R. (Editor), Calcareous Nannofosil Biostratigraphy. British Micropalaeontological Society Publications Series. Chapman & Hall, London, 225-265.
Young, J.R., Archontikis, O.A., Su, X., dan Pratiwi, S.D. 2021. Nannofosil palaeoecology of Lower Miocene sapropels from IODP Expedition 359, the Maldives. Palaeogeography, Palaeoclimatology, Palaeoecology.
Zachos, J.C.,Pagani, M., Sloan, L., Thomas, E., dan Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present.
DOI: https://doi.org/10.24198/bsc.v21i3.49736
Refbacks
- Saat ini tidak ada refbacks.