MOLECULAR IMPRINTING SOLID PHASE EXTRACTION MONOMER ASAM METAKRILAT (MAA) METODE RUAH DAN ENDAPAN

INDRASWARI PITALOKA, Dika Pramita Destiani

Abstrak


Molecular Imprinting Solid Phase Extraction (MIP-SPE) digunakan sebagai salah satu metode yang praktis untuk membantu mengecek bioavailibilitas obat pada tahap ekstraksi obat dengan bentuk suatu sorben selektif. Sorben dibuat dengan teknik molecular imprinting sehingga memiliki sisi pengenal yang dapat mengikat target obat secara spesifik. Salah satu proses yang menentukan kualitas dari sorben yang telah dibuat yaitu proses polimerisasi, yang dapat dilakukan dengan beberapa metode. Metode yang umum digunakan yaitu metode ruah, dan endapan. Studi kali ini membahas keunggulan dan kekurangan dari dua metode tersebut untuk sintesis MIP-SPE monomer Asam Metakrilat (MAA), berdasarkan hasil review 20 jurnal yang 10 diantaranya menggunakan proses polimerisasi metode endapan, dan 10 lainnya metode ruah. Nilai %Recoveries didapatkan lebih tinggi pada metode endapan, bentuk partikel yang lebih seragam, serta diameter skala microsphere (0,3-10 μm).

Kata kunci: MIP-SPE, MAA, Polimerisasi Ruah, Polimerisasi Endapan

 


Teks Lengkap:

PDF

Referensi


Amin, Mohajeri Sayed et al. 2013. Preparation of a pH-sensitive pantoprazole-imprinted polymer and evaluation of its drug-bindingand -releasing properties. Journal of Chemistry China.

Ansari, Saeedeh dan Azam Ghorbani. 2016. Molecularly imprinted polymers (mip) for selective solid phase extraction of celecoxib in urine samples followed by high performance liquid chromatography. Journal of Chemical Health Risks 7(0).

Beyki, Tooraj; Mohammad Javad Asadollahzadeh. 2016. Selective removal of Dicamba from aqueous samples using molecularly imprinted polymer nanospheres. J. Water Environ. Nanotechnol 1(1): 19-25.

Binsalom et al. 2016. Development of solid-phase extraction using molecularly imprinted polymer for the analysis of organophosphorus pesticides-(Chlorpyrifos) in aqueous solution. Journal of Chromatography and Separation Science, 7(6).

Bossi, A et al. 2007. Molecularly imprinted polymers for the recognition of proteins: The state of the art. Biosens. Bioelectron. 22:1131–1137.

Chen, Jun et al. 2014. Atrazine molecular imprinted polymers: comparative analysis by far-infrared and ultraviolet induced polymerization. International Journal of Molecular Science 15:574-581.

Chen, Lingxin et al. 2016. Molecular imprinting: perspectives and applications. Royal Society of Chemistry Advances Review Article.

Esteves, Teresa et al. 2016. Molecularly imprinted polymer strategies for removal of a genotoxic impurity, 4-Dimethylaminopyridine, from an active pharmaceutical ingredient post-reaction stream. Elsevier Journal of Separation and Purification Technology 163:206–214.

Golker, B. R. C. et al. 2013. Influence of composition and morphology on template recognition in molecularly imprinted polymers. Macromolecules, 46(4):1408–1414.

Haginaka, J. 2008. Monodispersed, molecularly imprinted polymers as affinity-based chromatography media. Journal of Chromatography B Analyt Technol Biomed Life Science. 15; 866(1-2):3-13.

Jin Y et al. 2008. Narrowly dispersed molecularly imprinted microspheres prepared by a modified precipitation polymerization method. Anal Chim Acta 612(1):105-13.

Jin Ya-Feng et al. 2013. Synthesis and evaluation of molecularly imprinted polymer for the determination of the phthalate esters in the bottled beverages by hplc. Hindawi Publishing Corp. Journal of Chemistry: 1-9.

Lai et al. 2007. Molecularly imprinted microspheres and nanospheres for di(2-Ethylhexyl) Phtalate prepared by precipitation polymerization. Anal Bioanal Chem: 389-405.

Lee, Shih Hui dan Ruey-An Doong. 2016. Design of size-tunable molecularly imprinted polymer for selective adsorption of pharmaceuticals and biomolecules. Journal of Biosensors & Bioelectronics.

Li, W. dan Li, S. 2007. Molecular imprinting: A versatile tool for separation, sensors and catalysis. Adv. Polym. Sci. 206:191–210.

Longo, L.; Vasapollo, G. 2008. Molecularly imprinted polymers as nucleotide receptors. Mini-Rev. Org. Chem. 5:163–170.

Mohajeri Seyed Ahmad. 2011. Clozapine recognition via molecularly imprinted polymers; bulk polymerization versus precipitation method. Journal of Applied Polymer Science, Vol. 121, 3590–3595.

Neto et al. 2010. A Hemin-based molecularly imprinted polymer (MIP) grafted onto a glassy carbon electrode as a selective sensor for 4-Aminophenol amperometric. Elsevier sensors and Actuators B: Chemical Vol.152(2) : 220-225.

Nurhayati, T et al. 2016. Synthesis and study of guest-rebinding of mip based on MAA prepared using theophylline template. Journal of Physics: Conference Series 739:012127.

Omidi, Fariborz et al. 2014. Application of molecular imprinted polymer nanoparticles as a selective solid phase extraction for preconcentration and trace determination of 2,4- Dichlorophenoxyacetic acid in the human urine and different water samples. Journal of Environmental Health Sciences and Engineering 12:137.

Pichon, V. dan Chapuis-Hugon, F. 2008. Role of molecularly imprinted polymers for selective determination of environmental pollutants—A review. Anal. Chim. Acta 622:48–61.

Poma, A.; Turner, A.P.F.; Piletsky, S.A. 2010. Advances in the manufacture of MIP nanoparticles. Trends Biotechnol 28:629–637

Puoci et al. 2007. Molecularly imprinted polymers for 5-Fluorouracil release in biological fluids. Molecules, 12:805-814.

Puoci, F et al. 2008. Stimuli-responsive molecularly imprinted polymers for drug delivery: A review. Curr. Drug Deliv. 5:85–96.

Rahminezhad, Mohsen et al. 2010. Synthesis of molecularly imprinted polymer as a solid phase sorbent for pesticide Dursban. International journal of occupational hygiene 2(2):55-56.

Renkecz, Tibor, Krisztina dan Viola Horvath. 2014. Molecularly imprinted microspheres prepared by precipitation polymerization at high monomer concentrations. Mol. Impr 2:1–17.

Saloni, et al. 2013. Theoretical investigation on monomer and solvent selection for molecular imprinting of nitrocompounds. Phys. Chem. A 117:1531–1534.

Sanagi, Mohd Marsin et al. 2010. Molecularly imprinted polymers for solid phase extraction of Orghanophosphorus pesticides. Journal of Fundamental Sciences 6( 1):27-30.

Seechamnanturakit, Vatcharee dan Roognapa Suedee. 2012. The synthesis and characterisation of retinol-molecularly imprinted polymers as a selective sorbent in solid-phase extraction. International Journal of Applied Science and Technology 2(7):81-93.

Song, Suquan et al. 2008. Development and application of molecularly imprinted polymers as solid-phase sorbents for Erythromycin extraction. Anal Bioanal Chem 390:2141–2150.

Vasapollo, Giuseppe et al. 2011. Review: molecularly imprinted polymers: present and future prospective. International Journal of Molecular Science. 12:5908-5945.

Wang et al. 2017. Molecularly imprinted polymers for selective extraction of oblongifolin c from garcinia yunnanensis hu. Molecules, 22: 508.

Xu, Shoufang, Hongzhi Lu, dan Lingxin Chen. 2014. Double water compatible molecularly imprinted polymers applied as solid-phase extraction sorbent for selective preconcentration and determination of Triazines in complicated water samples. Elsevier Journal of Chromatography A. 1350:23-29.

Zeng, Shaomei et al. 2015. Molecularly imprinted polymer for selective extraction and simultaneous determination of four tropane alkaloids from Przewalskia tangutica Maxim. fruit extracts using LC-MS/MS. Journal of Royal Society Chemistry Adv., 00:1-3.

Zuo Hai et al. 2015. Preparation of malathion MIP-SPE and its application in environmental




DOI: https://doi.org/10.24198/jf.v15i2.12951

DOI (PDF): https://doi.org/10.24198/jf.v15i2.12951.g5971

Refbacks

  • Saat ini tidak ada refbacks.




Sitasi manajer:   

 

 

Jurnal ini diindeks dalam:

 

 

View My Stats 

ISSN: 1693-1424

e-ISSN: 2716-3075

 

Farmaka by Universitas Padjadjaran is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Copyright © 2013 Jurnal Farmaka - All Right Reserved