PENGGUNAAN HEAT SHOCK PROTEIN 90 (HSP90) DENGAN RADIONUKLIDA 18F, 68Ga ATAU 89Zr UNTUK KANKER PAYUDARA

SINTHA NUR FITRIANI, Danni Ramdhani

Abstrak


Heat shock protein 90 (HSP90) adalah protein pendamping molekul yang tergantung pada ATP yang fungsinya sangat penting untuk mempertahankan beberapa protein utama yang terlibat dalam kelangsungan hidup dan proliferasi sel kanker. Pada sel-sel kanker terjadi peningkatan aktivitas HSP90 terutama pada kanker payudara yang mana HSP90 memiliki peran dalam meregulasi onkogen, apoptosis dan resistensi kemoterapi. Pencitraan molekular menggunakan isotop berumur pendek seperti galium 68 atau flourin 18 (Galium 68, t 1/2 = 68 menit; Flourin 18, t 1/2 = 110 menit) dan zirkonium 89 (t 1/2 = 78,41 jam). Tujuan dilakukannya review ini adalah untuk memberikan informasi kepada masyarakat terkait HSP90 yang digunakan baik sebagai molekular target atau HSP90 inhibitor yang dilabeli dengan radioisotop Ga-68, F-18 dan Zr-89 untuk terapi kanker payudara. HSP90 inhibitor dapat diberikan terlebih dahulu untuk menurunkan overekspresi protein lalu dilakukan pencitraan molekular menggunakan radionuklida 68Ga, 18F atau 89Zr atau dapat juga dengan dilabeli secara langsung HSP90 inhibitor (Ganetespib) pada radionuklida dan dilihat serapan yang paling banyak pada sel kanker payudara.


Teks Lengkap:

PDF

Referensi


Daftar Pustaka

Beylergil, V. et al., 2013. Pilot study of (68)Ga-DOTA-F(ab′)(2)trastuzumab in patients with breast cancer. Nuclear medicine communications, p. 34(12): 1157.

Dalm, S. U., Verzijlbergen, J. F. & Jong, M. D., 2017. Review: Receptor Targeted Nuclear Imaging of Breast Cancer. International Journal of Molecular Sciences, pp. 18,260:1-18.

Deri, M. A., Zeglis, B. M., Francesconi, L. C. & Lewis, J. S., 2013. PET Imaging with 89Zr: From Radiochemistry to the Clinic. Nucl Med Biol., pp. 40(1):3-14.

Friedland, J. C., Smith, D. L., Sang, J. & et al, 2014. Targeted inhibition of Hsp90 by ganetespib is effective across a broad spectrum of breast cancer subtypes. Invest New Drugs, pp. 32(1):14-24.

Gewirth, D. T., 2016. Paralog specific Hsp90 Inhibitors–a brief history and a bright future. Curr Top Med Chem, pp. 16(25):2779-2791.

Holland, J. P. et al., 2010. Measuring the Pharmacodynamic Effects of a Novel Hsp90 Inhibitor on HER2/neu Expression in Mice Using 89Zr-DFO-Trastuzumab. PLoS one, pp. 5(1):1-11.

Jhaveri, K. & Modi, S., 2015. Ganetespib: research and clinical development. OncoTargets Ther, pp. 8:1849-1858.

Kang, J. et al., 2018. Radiosynthesis, biological evaluation and preliminary microPET study of 18F-labeled 5-resorcinolic triazole derivative based on ganetespib targeting HSP90. Bioorganic & Medicinal Chemistry Letters, pp. 28 : 3658-3664.

Kramer-Marek, G., Kiesewetter, D. O. & Capala, J., 2009. HER2 expression changes in breast cancer xenograft following therapeutic intervention can be quantified using PET imaging and 18F-labelled affibody molecules. Journal of nuclear medicine: official publication, society of uclear medicine, p. 50(7):1131.

Neckers, L., Schulte, T. W. & Mimnaugh, E., 1999. Geldanamycin as a potential anti-cancer agent: its molecular target and biochemical activity. Invest New Drugs, pp. 17(4):361-373.

Oude Munnink, T. H. et al., 2009. 89Zr-Trastuzumab PET visualises HER2 downregulation by the HSP90 inhibitor NVP-AUY922 in a human tumour xenograft. European Journal of Cancer, pp. 46(2010): 678-684.

Sandström, M. et al., 2016. Biodistribution and radiation dosimetry of the anti-HER2 affibody molecule 68Ga-ABY-025 in breast cancer patients. Journal of Nuclear Medicine, pp. 57(6): 867-871.

Schopf, F. H., Biebl, M. M. & Buchner, J., 2017. The HSP90 chaperone machinery. Nature Reviews Molecullar Cell Biology, pp. 18(6):345-360.

Schulte, T. W. & Neckers, L. M., 1998. The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother Pharmacol, pp. 42(4):273-279.

Smith-Jones, P. M. et al., 2004. Imaging the pharmacodynamics of HER2 degradation in response to HSP90 inhibitors. nature biotechnology, pp. 22(6): 701-706.

Soudry, E. et al., 2017. Heat shock proteins HSP90, HSP70 and GRP78 expression in medullary thyroid carcinoma. Annals of Diagnostic Pathology, pp. 26:52-56.

Taldone, T., Sun, W. & Chiosis, G., 2009. Discovery and development of heat shock protein 90 inhibitors. Bioorg Med Chem, pp. 17 : 2225-2235.

Trepel, J., Mollapour, M., Giaccone, G. & Neckers, I., 2010. Targeting the dynamic HSP90 complex in cancer. Nature Reviews Cancer, pp. 10(8):537-549.

Whitesell, I. & Lindquist, S. L., 2004. HSP90 and the chaperoning of cancer. Nature Reviews Cancer, pp. 5(10):761-772.

Zhang, H., Neely, L., Lundgren, K. & al., e., 2010. BIIB021, a synthetic Hsp90 inhibitor, has broad application against tumors with acquired multidrug resistance. International Journal Cancer, pp. 126(5):1226-1234.




DOI: https://doi.org/10.24198/farmaka.v18i1.26176

DOI (PDF): https://doi.org/10.24198/farmaka.v18i1.26176.g12786

Refbacks

  • Saat ini tidak ada refbacks.




Sitasi manajer:   

 

 

Jurnal ini diindeks dalam:

 

 

View My Stats 

ISSN: 1693-1424

e-ISSN: 2716-3075

 

Farmaka by Universitas Padjadjaran is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Copyright © 2013 Jurnal Farmaka - All Right Reserved