REVIEW ARTIKEL : STRUKTUR, REPLIKASI DAN INHIBITOR RNA-DEPENDENT RNA POLYMERASE CORONAVIRUS

ERVITA INDRIANI, TINA ROSTINAWATI

Abstrak


Coronavirus (CoV) merupakan virus patogen yang dapat menginfeksi manusia dan vertebrata. Wabah sindrom pernapasan akut yang parah (SARS) pada tahun 2003 dan sindrom pernapasan Timur Tengah (MERS) pada tahun 2012 menunjukkan kemungkinan penularan dari hewan ke manusia dan manusia ke manusia pada infeksi CoV yang baru muncul pada Desember 2019. Pengobatan suportif dapat digunakan untuk menangani kasus infeksi oleh CoV seperti obat yang dapat menghambat RNA-dependent RNA Polymerase (RdRp). RdRp merupakan bagian dari virus RNA yang berperan untuk mengkatalisasi sintesis virus dan memainkan peran sentral dalam siklus replikasi dan transkripsi. Tujuan dari artikel review ini yaitu untuk mengkaji struktur dan replikasi Coronavirus, dan obat yang dapat menghambat RdRp. Metode yang digunakan dalam review ini yaitu berupa penelusuran pustaka berbasis Pubmed dan Google Scholar dengan kata kunci “Coronavirus”, “Coronavirus replication“Structure coronavirus”, dan “Inhibitor RdRp”. Simpulan dari review ini yaitu CoV termasuk virus RNA untai tunggal positif ((+) ssRNA), terdiri dari protein struktural dan non-struktural. RdRp termasuk protein non-struktural yang dapat dihambat aktivitasnya dengan analog nukleotida. Analog nukleotida tersebut yaitu remdesivir, favipirafir, sofosbuvir dan ribavirin. Remdesivir dapat digunakan sebagai terapi infeksi CoV terbukti dengan pengujian yang telah dilakukan secara in vitro maupun in vivo.

Kata kunci : Coronavirus, RNA-dependent RNA Polymerase, replikasi coronavirus, inhibitor RdRp dan remdesivir

Teks Lengkap:

PDF

Referensi


Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269–71.

Ge XY, Li JL, Yang X Lou, Chmura AA, Zhu G, Epstein JH, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature [Internet]. 2013;503(7477):535–8. Available from: http://dx.doi.org/10.1038/nature12711

Drexler JF, Corman VM, Drosten C. Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antiviral Res [Internet]. 2014;101(1):45–56. Available from: http://dx.doi.org/10.1016/j.antiviral.2013.10.013

Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol [Internet]. 2019;17(3):181–92. Available from: http://dx.doi.org/10.1038/s41579-018-0118-9

WHO. Coronavirus disease (COVID-19) Situation Report-132 [Internet]. 2020. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports

Ziebuhr J. The coronavirus replicase. Curr Top Microbiol Immunol. 2005;287:57–94.

Greenberg SB. Update on Human Rhinovirus and Coronavirus Infections. Semin Respir Crit Care Med. 2016;37(4):555–71.

Perlman S, Netland J. Coronaviruses post-SARS: Update on replication and pathogenesis. Nat Rev Microbiol. 2009;7(6):439–50.

Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet [Internet]. 2020;395(10224):565–74. Available from: http://dx.doi.org/10.1016/S0140-6736(20)30251-8

Raj VS, Mou H, Smits SL, Dekkers DHW, Müller MA, Dijkman R, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013;495(7440):251–4.

Huang X, Dong W, Milewska A, Golda A, Qi Y, Zhu QK, et al. Human Coronavirus HKU1 Spike Protein Uses O -Acetylated Sialic Acid as an Attachment Receptor Determinant and Employs Hemagglutinin-Esterase Protein as a Receptor-Destroying Enzyme . J Virol. 2015;89(14):7202–13.

Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH, Look AT, et al. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature. 1992;357(6377):420–2.

Elfiky AA, Mahdy SM, Elshemey WM. Quantitative structure-activity relationship and molecular docking revealed a potency of anti-hepatitis C virus drugs against human corona viruses. J Med Virol. 2017;89(6):1040–7.

Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res [Internet]. 2020;24:91–8. Available from: https://doi.org/10.1016/j.jare.2020.03.005

Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 2020;92(4):418–23.

Elfiky AA. SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: an in silico perspective . J Biomol Struct Dyn [Internet]. 2020;0(0):1–9. Available from: http://dx.doi.org/10.1080/07391102.2020.1761882

Klausegger A, Strobl B, Regl G, Kaser A, Luytjes W, Vlasak R. Identification of a Coronavirus Hemagglutinin-Esterase with a Substrate Specificity Different from Those of Influenza C Virus and Bovine Coronavirus. J Virol. 1999;73(5):3737–43.

Hondinka R. Respiratory RNA Viruses. Microbiol Spectr. 2016;4(4):1–33.

Kirchdoerfer RN, Cottrell CA, Wang N, Pallesen J, Yassine HM, Turner HL, et al. Pre-fusion structure of a human coronavirus spike protein. Nature. 2016;531(7592):118–21.

Neuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF, Connelly S, et al. A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol [Internet]. 2011;174(1):11–22. Available from: http://dx.doi.org/10.1016/j.jsb.2010.11.021

Venkatagopalan P, Daskalova SM, Lopez LA, Dolezal KA, Hogue BG. Coronavirus envelope (E) protein remains at the site of assembly. Virology [Internet]. 2015;478:75–85. Available from: http://dx.doi.org/10.1016/j.virol.2015.02.005

Poltronieri P, Sun B, Mallardo M. RNA Viruses: RNA Roles in Pathogenesis, Coreplication and Viral Load. Curr Genomics. 2015;16(5):327–35.

Alanagreh L, Alzoughool F, Atoum M. The human coronavirus disease covid-19: Its origin, characteristics, and insights into potential drugs and its mechanisms. Pathogens. 2020;9(5).

Subissi L, Posthuma CC, Collet A, Zevenhoven-dobbe JC, Gorbalenya AE. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. 2014;

Shannon A, Le NTT, Selisko B, Eydoux C, Alvarez K, Guillemot JC, et al. Remdesivir and SARS-CoV-2: Structural requirements at both nsp12 RdRp and nsp14 Exonuclease active-sites. Antiviral Res [Internet]. 2020;178:104793. Available from: https://doi.org/10.1016/j.antiviral.2020.104793

Sheahan TP, Sims AC, Graham RL, Menachery VD, Gralinski LE, Case JB, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med. 2017;9(396).

Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, Lu X, et al. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio. 2018;9(2):1–15.

Fredrickson BL, Cohn M a, Coffey K a, Pek J, Finkel SM. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. J Pers Soc Psychol. 2008;95(2):1045–62.

Hayden FG, Shindo N. Influenza virus polymerase inhibitors in clinical development. Curr Opin Infect Dis. 2019;32(2):176–86.

Stedman C. Sofosbuvir, a NS5B polymerase inhibitor in the treatment of hepatitis C: A review of its clinical potential. Therap Adv Gastroenterol. 2014;7(3):131–40.

Thomas E, G Ghany M, Liang TJ. The application and mechanism of action of ribavirin in therap of hepatitis c. Antivir Chem Chemother. 2018;23(1):1–12.

FDA. Rebetol (Ribavirin USP) [Internet]. 2019. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/020903s055,021546s011lbl.pdf

Venkataraman S, Prasad BVLS, Selvarajan R. RNA dependent RNA polymerases: Insights from structure, function and evolution. Viruses. 2018;10(2):1–23.

Nguyen THT, Guedj J, Anglaret X, Laouénan C, Madelain V, Taburet AM, et al. Favipiravir pharmacokinetics in Ebola-Infected patients of the JIKI trial reveals concentrations lower than targeted. PLoS Negl Trop Dis. 2017;11(2):1–18.

Denning J, Cornpropst M, Flach SD, Berrey MM, Symonds WT. Pharmacokinetics, safety, and tolerability of GS-9851, a nucleotide analog polymerase inhibitor for hepatitis c virus, following single ascending doses in healthy subjects. Antimicrob Agents Chemother. 2013;57(3):1201–8.

Warren TK, Jordan R, Lo MK, Ray AS, Mackman RL, Soloveva V, et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature. 2016;531(7594):381–5.

Food and drug organization. remdesivir EUA Letter of Authorization. 2020;564:1–6. Available from: https://www.fda.gov/media/137564/download




DOI: https://doi.org/10.24198/farmaka.v18i2.27769

DOI (PDF): https://doi.org/10.24198/farmaka.v18i2.27769.g14726

Refbacks

  • Saat ini tidak ada refbacks.




Sitasi manajer:   

 

 

Jurnal ini diindeks dalam:

 

 

View My Stats 

ISSN: 1693-1424

e-ISSN: 2716-3075

 

Farmaka by Universitas Padjadjaran is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Copyright © 2013 Jurnal Farmaka - All Right Reserved