REVIEW ARTIKEL CELLULOSE NANOFIBER : ISOLASI, KARAKTERISASI, DAN APLIKASI DI BIDANG FARMASI

Anisa Nur Fitriani, Neily Zakiyah

Abstrak


Abstrak

Banyak sediaan farmasi yang menggunakan kemasan berbahan dasar plastik yang  bisa berdampak buruk bagi lingkungan. Oleh karena itu, banyak peneliti yang mencari alternatif lain sebagai pengganti plastik atau lebih dikenal sebagai bioplastik. Salah satu bahan baku bioplastik yang banyak di kembangkan saat ini yaitu cellulose nanofibril (CNF). Isolasi CNF terdiri dari dua tahap yaitu tahap pretreatment dan tahap produksi. Tahap pretreatment memiliki beberapa jenis metode diantaranya pembuatan pulp, oksidasi TEMPO, hidrolisis enzim, hidrolisis asam, dan bleaching. Beberapa jenis metode dalam tahap produksi yaitu, homogenisasi, mikrofluidisasi, penggilingan ultra-fine friction, ekstruksi, ultrasonifikasi, dan cryocrushing. Karakterisasi terpenting dari CNF yang dihasilkan yaitu morfologi, derajat fibrilasi, dan sifat reologi. Di bidang farmasi, CNF juga telah digunakan sebagai bahan kemasan dan modifikasi pelepasan serta penghantaran obat dari formulasi tablet dan kapsul.

Kata Kunci: Selulosa nanofiber, Isolasi, Karakterisasi, Aplikasi di bidang farmasi.

 

Abstract

Many pharmaceutical preparations use plastic-based packaging which can be bad for the environment. Therefore, many researchers are looking for other alternatives as plastic substitutes or better known as bioplastics. One of the most current and widely developed bioplastic raw materials is cellulose nanofibrils (CNF). CNF isolation consists of two stages, the pretreatment stage and the production stage. The pretreatment stage has several types of methods including pulp making, TEMPO oxidation, enzyme hydrolysis, acid hydrolysis, and bleaching. Several types of methods are in the production stage, namely, homogenization, microfluidization, ultra-fine friction milling, extruction, ultrasonification, and cryocrushing. The most important characterizations of the resulting CNF were morphology, degree of fibrillation, and rheological properties. In the pharmaceutical field, CNF has also been used as a packaging material and modification of drug release and delivery from tablet and capsule formulations.

Keywords: Cellulosa nanofiber, Isolation, Characterization, Application in pharmacy.


Teks Lengkap:

PDF

Referensi


Isogai, A. Wood nanocelluloses: fundamentals and applications as newbio-based nanomaterials. J. Wood. Sci, 2013;59: 449-459.

Lavoine, N., Desloges, I., Dufresne, A. & Bras, J. Microfibrillated cellulose—itsbarrier properties and applications in cellulosic materials. Carbohydr.Polym, 2012; 90: 735-764.

Nechyporchuk, O., Belgace, M. & Bras, J. Production of cellulose nanofibrils: A review of recent advances. Industrial Crops and Products, 2016; 93: 2-25.

Moon, R. et al. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc.Rev, 2011; 40:3941-3994.

Osong, S., Norgren, S. & Engstrand, P. Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking. Cellulose, 2015; 2: 1-31.

Charreau, H., Foresti, M. & Vazquez, A. Nanocellulose patents trends: acomprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat. Nanotechnol. 2013; 7: 56-80.

Chinga, C. Cellulose fibres, nanofibrils and microfibrils: themorphological sequence of MFC components from a plant physiology and fibretechnology point of view. Nanoscale Res. Lett., 2011; 417(6).

Usov, I. et al. Understanding nanocellulose chirality and structure-properties relationship at the single fibril level. Nat. Commun., 2015; 6: 7564-7577.

Benhamou, K. et al. Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the tempo-mediated oxidation time. Carbohydrate Polymer. 2014; 99: 74–83.

Varshney, V. & Naithani, S. Chemical functionalization of cellulose derivedfrom nonconventional sources. In: Kalia, S., Kaith, B.S., Kaur, I. (Eds.), CelluloseFibers: Bio- and Nano-Polymer Composites. Berlin: Springer. 2011.

Besbes, I., Vilar, M. & Boufi, S. Nanofibrillated cellulose from alfa, eucalyptus and pine fibres: preparation, characteristics and reinforcing potential. Carbohydrate Polymer. 2011; 86: 1198–1206.

Klemm, D. et al. Nanocelluloses: a new family of nature-based materials. Angewandte ChemiInternational Edition, 2011; 50: 5438–5466.

Yousefi, H. et al. Comparative study of paper and nanopaper properties prepared from bacterial cellulose nanofiber and fibers/ground cellulose nanofibers of canola straw. Ind Crops Prod, 2013; 43: 732-737.

Brinchi, L., Cotana, F., Fortunati, E. & Kenny, J. M. Production of nanocrys-talline cellulose from lignocellulosic biomass: technology and applications. Carbohydrate Polymer, 2013; 94: 154–169.

Isik, M., Sardon, H. & Mecerreyes, D. ionic liquids and cellulose: dissolution, chemical modification and preparation of new cellulosic materials. IJMS, 2014; 15(7): 11922-11940.

Fatah, I. et al. Exploration of a chemo-mechanical technique for the isolation of nanofibrillated cellulosic. Polymers, 2014; 6(10): 2611-2624.

Carrillo, C., Laine, J. & Rojas, O. Microemulsion systems for fiber deconstruction into cellulose nanofibrils. ACS Appl. Mater. 2014; 6: 22622–22627.

Gonzalez, R. et. al. Thermo-mechanical pulping as a pretreatment for agricultural biomass for biochemical conversion. Bio Resources, 2011; 6(2): 599–614.

Nechyporchuk, O. B. et al. Rheological properties of micro/nanofibrillated cellulose suspensions: wall-slip and shear banding phenomena. Carbohydr. Polym, 2014; 112: 432–439.

Davoudpour, Y. et al. Optimization of high pressure homogenization parameters for the isolation of cellulosic nanofibers using response surface methodology. Ind Crops Prod. 2015; 74: 381-387.

Khalil, A. et al. Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym, 2014; 99: 649-665.

Su, Y., Burger, C., Hsiao, B. & Chu, B. Characterization of TEMPO-oxidized cellulose nanofibers in aqueous suspension by small-angle- x ray scattering. J Appl Crystallogr, 2014; 47(2): 788-789.

Khalil, A. et al. A Review on nanocellulosic fibres as new material for sustainable packaging: process and application. Renewable and Sustainable Energy Reviews, 2016; 64: 823-836.

Gon, D., Das, K., Paul, P. & Maity, S. Jute composites as wood substitute. Int J Text Sci, 2012; 1(6): 84-93.

Muguet, M. et. al. Thermomechanical pulping of novel brazilian eucalyptus hybrids. Holzforschung, 2013. 67(5): 489-495.

Nayeri, M.. Medium density fibre board made from kenaf (Hibiscus cannabinus L.) stem: effect of thermo-mechanical refining and resin content. Bio Resources, 2014; 9(2): 2372-2381.

Ho, C., Wu, K., Wang, I. & Su, Y. Kinetic study of carbohydrate dissolution during tetra-hydrofurfuryl alcohol/hcl pulping of rice straw. Bio Resources, 2012; 7(2): 5719-5736.

Aracri, E., Vidal, T. & Ragauskas, A. Wet strength development in sisal cellulose fibers by effect of a laccase-tempo treatment. Carbohydrate Polymer, 2011; 84(4): 1384-1390.

Liimatainen, H. et al. Fabrication of cationic cellulosic nanofibrils through aqueous quaternization pretreatmentand their use in colloid aggregation. Carbohydr. Polym, 2014. 103: 187–192.

Spence, K. et al. A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose, 2011; 18: 1097–1111.

Bardet, R., Belgacem, M. & Bras, J. Different strategies for obtaining highopacity films of mfc with TiO2 pigments. Cellulose 2013; 20: 3025–3037

Ho, T., Abe, K., Zimmermann, T. & Yano, H. Nanofibrillation of pulp fibers by twin-screw extrusion. Cellulose, 2015; 22: 421–433.

Chen, W. et al. Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydrate Polymer, 2011; 83: 1804–1811.

Saito, T. et al. An ultra strong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules, 2013; 14: 248–253.

Hoeger, I. et al. Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification. Cellulose, 2013; 20: 807–818.

Chaker, A. & Boufi, S., 2015. Cationic nanofibrillar cellulose with high antibacterial properties. Carbohydrate Polymer, 2015; 131: 224–232.

Qing, Y. et al. A comparative study ofcellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr.Polym., 2013; 9: 226–234.

Nechyporchuk, O., Pignon, F. & Belgacem, M. Morphological properties of nanofibrillated cellulose produced using wet grinding as an ultimate fibrillation process. J. Mater. Sci., 2015; 50: 531–541.

Charani, P. et al. Production of microfibrillated cellulose from unbleached kraft pulp of kenaf and scotch pine and its effect on the properties of hardwood kraft. Cellulose, 2013; 20: 2559-2567.

Singh, A., Sharma, P. & Malviya, R. Eco friendly pharmaceutical packaging material. World Appl Sci J, 2011. 14(11): 1703-1716.

Kalia, S., Boufi, S., Celli, A. & Kango, S., 2014. Nanofibrillated cellulose: surface modification and potential applications. Colloid and Polymer Science, 2014. 292: 5-31.




DOI: https://doi.org/10.24198/farmaka.v19i3.33639

DOI (PDF): https://doi.org/10.24198/farmaka.v19i3.33639.g16529

Refbacks

  • Saat ini tidak ada refbacks.




Sitasi manajer:   

 

 

Jurnal ini diindeks dalam:

 

 

View My Stats 

ISSN: 1693-1424

e-ISSN: 2716-3075

 

Farmaka by Universitas Padjadjaran is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Copyright © 2013 Jurnal Farmaka - All Right Reserved