NEUTRALIZING ANTIBODY TERJADI PADA MANUSIA DARI VIRUS SARS-COV-2 AKIBAT VAKSIN YANG BEREDAR DI INDONESIA
Abstrak
ABSTRAK
Kebutuhan akan vaksin untuk menanggulangi Covid-19 semakin meningkat. Penelitianpun digencarkan untuk mendapatkan vaksin yang lebih baik dari segi efektivitas dan keamanannya. Selain itu dilihat pula respon yang terjadi didalam tubuh setelah diberikan vaksinasi. Antibodi penetral adalah penanda kekebalan tubuh terhadap infeksi berulang dari virus yang sama dan muncul sebagai respon tubuh setelah diberikan vaksinasi. Peneliti dari seluruh dunia berpacu dengan waktu mengembangkan vaksin dengan efek yang terbaik. Dari vaksin-vaksin tersebut pemerintah telah menetapkan beberapa vaksin yang akan digunakan di Indonesia. Penelitian ini bertujuan untuk merangkum antibodi penetral dan sel yang berkontribusi terhadap kekebalan tubuh yang muncul setelah dilakukannya vaksinasi. Sehingga didapatkan informasi terkait antibodi penetral yang muncul dan efektivitas vaksin tersebut dalam menjaga kekebalan tubuh.
ABSTRACT
The need for vaccines to cope with Covid-19 is increasing. Research was launched to get a better vaccine in terms of effectiveness and safety. In addition, it is also seen the response that occurs in the body after vaccination. Neutralizing antibodies are markers of the body's immunity against recurrent infections of the same virus and appear as a response of the body after vaccination. Researchers from around the world are racing against the clock to develop a vaccine with the best effects. From these vaccines the government has determined several vaccines that will be used in Indonesia. This study aims to summarize neutralizing antibodies and cells that contribute to the immunity that arises after vaccination. So that information related to neutralizing antibodies that appear and the effectiveness of the vaccine in maintaining immunity.
Keywords : Neutralizing Antibodi, COVID-19, Vaccine
Teks Lengkap:
PDFReferensi
Anderson, E. J., Rouphael, N. G., Widge, A. T., Jackson, L. A., Roberts, P. C., Makhene, M., ., Beigel, J. H. et al (2020). Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. New England Journal of Medicine, 383(25), 2427-2438.
BPOM.2021. Penerbitan Emergency Use Authorization Vaksin COVID-19 Produksi PT.Bio Farma. Dapat diakses secara online di https://www.pom.go.id/new/view/more/pers/589/Penerbitan-Emergency-Use-Authorization-Vaksin-COVID-19--Produksi-PT--Bio-Farma.html [ Diakses pada tanggal 05 Juni 2021]
Chen, W. H. et al. (2020) ‘The SARSCoV-2 Vaccine Pipeline: an Overview’,Current Tropical Medicine Reports.Current Tropical Medicine Reports, pp. 1–4. doi: 10.1007/s40475-020-00201-6
Corbett KS, Edwards D, Leist SR, et al. SARS-CoV-2 mRNA vaccine development enabled by prototype pathogen preparedness. June 11, 2020 (https://www .biorxiv.org/content/10.1101/2020.06.11.145920v1).preprint.
Corbett KS, Flynn B, Foulds KE, et al. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. N Engl J Med. DOI: 10.1056/NEJMoa2024671.
Ewer, K. J., Barrett, J. R., Belij-Rammerstorfer, S., Sharpe, H., Makinson, R., Morter, R., ... & Lambe, T. (2021). T cell and antibody responses induced by a single dose of ChAdOx1 nCoV-19 (AZD1222) vaccine in a phase 1/2 clinical trial. Nature medicine, 27(2), 270-278.
Gao, Q. et al. Development of an inactivated vaccine candidate for SARS-CoV-2.Science 369, 77–81 (2020).
Guebre-Xabier, M., Patel, N., Tian, J. H., Zhou, B., Maciejewski, S., Lam, K., ... & Smith, G. (2020). NVX-CoV2373 vaccine protects cynomolgus macaque upper and lower airways against SARS-CoV-2 challenge. Vaccine, 38(50), 7892-7896.
Jackson, L.A., Anderson, E.J., Rouphael, N.G., Roberts, P.C., Makhene, M., Coler, R.N., McCullough, M.P., Chappell, J.D., Denison, M.R., Stevens, L.J., et al. (2020). An mRNA Vaccine against SARS-CoV-2 - Preliminary Report. N Engl J Med.
Jing-Hui Tian, Nita Patel, Robert Haupt, Haixia Zhou, Stuart Weston, Holly Hammond, et al. SARS-CoV-2 spike glycoprotein vaccine candidate NVXCoV2373 elicits immunogenicity in baboons and protection in mice. bioRxiv 2020; doi: https://doi.org/10.1101/2020.06.29.178509.
Keech C, Albert G, Cho I, Robertson A, Reed P, Neal S, Plested JS, Zhu M, Cloney- Clark S, Zhou H, Smith G, Patel N, Frieman MB, Haupt RE, Logue J, McGrath M, Weston S, Piedra PA, Desai C, Callahan K, Lewis M, Price-Abbott P, Formica N, Shinde V, Fries L, Lickliter JD, Griffin P, Wilkinson B, Glenn GM. Phase 1–2 Trial of a SARS-CoV-2 Recombinant Spike Protein Nanoparticle Vaccine. N Engl J Med 2020. https://doi.org/10.1056/NEJMoa2026920.
Keputusan Menteri Kesehatan Republik Indonesia Nomor HK.01.07/ MENKES/12758/2020 tentang Penetapan Jenis Vaksin Untuk Pelaksanaan Vaksinasi Corona Virus Disease 2019 (COVID-19). 28 Desember 2020.Jakarta
Keputusan Menteri Kesehatan Republik Indonesia Nomor HK.01.07/MENKES/382/2020 Protokol Kesehatan Bagi Masyarakat Di Tempat dan Fasilitas Umum dalam Rangka Pencegahan dan Pengendalian Corona Virus Disease 2019 (COVID-19). 19 Juni 2020. Jakarta.
Klasse, P.J., Moore, J.P., 2012. Good CoP, bad CoP? Interrogating the immune responses to primate lentiviral vaccines.Retrovirology 9: 80.
Lauer, K. B., Borrow, R., & Blanchard, T. J. (2017). Multivalent and Multipathogen Viral Vector Vaccines. Clinical and Vaccine Immunology, 24(1), e00298-00216. doi:10.1128/CVI.00298-16
Liu, W. J. et al. T-cell immunity of SARS-CoV: Implications for vaccine development against MERS-CoV. Antiviral Res. 137, 82–92 (2017).
Lu, R. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet (London, England) 395, 565-574 (2020).
Mullard A. COVID-19 vaccine development pipeline gears up. Lancet. 2020;395:1751–2.
Nicole Lurie, M.D, et al (2020) ‘New england journal’, Developing Covid-19 Vaccines at Pandemic Speed, 1, pp. 1–5
Pardi, N. et al. Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses. J. Exp. Med. 215, 1571–1588 (2018).
Prompetchara, E., Ketloy, C., & Palaga, T. (2020). Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol, 38(1), 1-9.
Rollier, C. S., Reyes-Sandoval, A., Cottingham, M. G., Ewer, K., & Hill, A. V. S. (2011). Viral vectors as vaccine platforms: deployment in sight. Current Opinion in Immunology, 23(3), 377-382. doi:https://doi.org/10.1016/j.coi.2011.03.006
Rothan HA, Byrareddy SN. 2020. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. Journal of Autoimmunity.109:1-4
Sahin, U., Muik, A., Vogler, I., Derhovanessian, E., Kranz, L. M., Vormehr, M., ... & Türeci, Ö. (2020). BNT162b2 induces SARS-CoV-2-neutralising antibodies and T cells in humans. medRxiv.
Satgas COVID-19. 2021. Pengendalian COVID-19 dengan 3M, 3T, Vaksinasi, Disiplin, Kompak dan Konsisten Buku I.Maret. Satuan Penanganan COVID-19. Jakarta
Shinde, V., Bhikha, S., Hoosain, Z., Archary, M., Bhorat, Q., Fairlie, L., ... & Madhi, S. A. (2021). Efficacy of NVX-CoV2373 covid-19 vaccine against the b. 1.351 variant. New England Journal of Medicine.
Wang, H., Zhang, Y., Huang, B., Deng, W., Quan, Y., Wang, W., ... & Yang, X. (2020). Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2. Cell, 182(3), 713-721.
WHO.2021. Data Vaksinasi COVID-19 (Update per 15 Mei 2021) https://covid19.go.id/berita/data-vaksinasi-covid-19-update-15-mei-2021 [ Diakses pada 16 Mei 2021]
WHO.2021. Naming the coronavirus disease (COVID-19) and the virus that cause it. Dapat diakses secara online di https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it [ Diakses pada 16 Mei 2021]
WHO.2021. Weekly Epidemiological Update On COVID-19 – 11 May 2021. Dapat diakses secara online di https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---11-may-2021 [Diakses pada 16 Mei 2021]
Xia, S., Zhang, Y., Wang, Y., Wang, H., Yang, Y., Gao, G. F., ... & Yang, X. (2021). Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. The Lancet Infectious Diseases, 21(1), 39-51.
Zhang, Y. J., Zeng, G., Pan, H. X., Li, C. G., Kan, B., Hu, Y. L., ... & Zhu, F. C. (2020). Immunogenicity and safety of a SARS-CoV-2 inactivated vaccine in healthy adults aged 18-59 years: report of the randomized, double-blind, and placebo-controlled phase 2 clinical trial. medrxiv.
Zhao, J., Perera, R. A., Kayali, G., Meyerholz, D., Perlman, S., & Peiris, M. (2015). Passive immunotherapy with dromedary immune serum in an experimental animal model for Middle East respiratory syndrome coronavirus infection. Journal of virology, 89(11), 6117-6120.
Zheng, H. Y., Zhang, M., Yang, C. X., Zhang, N., Wang, X. C., Yang, X. P., ... & Zheng, Y. T. (2020). Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cellular & molecular immunology, 17(5), 541-543.
DOI: https://doi.org/10.24198/farmaka.v20i1.33924
DOI (PDF): https://doi.org/10.24198/farmaka.v20i1.33924.g17344
Refbacks
- Saat ini tidak ada refbacks.
Sitasi manajer:
Jurnal ini diindeks dalam:
Farmaka by Universitas Padjadjaran is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright © 2013 Jurnal Farmaka - All Right Reserved