REVIEW ARTIKEL: PENINGKATAN KELARUTAN OBAT CARVEDILOL

Nurdiani Adiningsih, Dolih Gozali

Abstrak


Abstrak

Carvedilol adalah beta bloker non selektif dengan aktivitas penghambat reseptor alfa-1 yang sering diresepkan untuk pengobatan penyakit kardiovaskular.  Carvedilol termasuk ke dalam BCS (Bipharmaceutical Classification System) kelas II dimana memiliki permeabilitas membran yang tinggi tetapi memiliki laju disolusi yang lambat karena kelarutan dalam air yang rendah. Review ini berisi tentang teknik peningkatan kelarutan dari carvedilol dengan melakukan pencarian literatur melalui jurnal nasional dan jurnal internasional.   Berbagai jenis teknik peningkatan kelarutan obat telah diterapkan pada carvedilol seperti dispersi padat dengan berbagai metode preparasinya, c-MCMs, ko-kristalisasi, cyclodextrin inclusion complex, superkritikal karbon dioksida, hidrotropi, polymeric microparticles, pembentukan garam, dan nanopartikel. Dari semua teknik yang diterapkan telah terbukti dapat meningkatkan kelarutan dari carvedilol.

ABSTRACT

Carvedilol is a non-selective beta blocker with alpha-1 receptor blocking activity that is often prescribed for the treatment of cardiovascular disease. Carvedilol belongs to the BCS (Bipharmaceutical Classification System) class II which has high membrane permeability but has a slow dissolution rate due to low water solubility. This review contains techniques for increasing the solubility of carvedilol by conducting a literature search through national and international journals. Various types of drug solubility enhancement techniques have been applied to carvedilol such as solid dispersion with various preparation methods, c-MCMs, co-crystallization, cyclodextrin inclusion complex, supercritical carbon dioxide, hydrotropy, polymeric microparticles, salting, and nanoparticles. All the techniques have been shown to increase the solubility of carvedilol.


Teks Lengkap:

PDF

Referensi


Arregui, J.R., Kovvasu, S.P., Kunamaneni, P., Betageri, G.V. 2019. Carvedilol solid dispersion for enhanced oral bioavailability using rat model. J. Appl. Pharm. Sci. 9: 42–50.

Bhosale, P., Pore, Y., Sayyad, F. 2012. Preparation of amorphous carvedilol polymeric microparticles for improvement of physicochemical properties. J. Pharm. Investig. 42: 335–344.

Chikhle H, Pandey V, Ganeshpurkar A, Dubey N, Bansal D. 2016. Solubility enhancement of carvedilol using mixed hydrotropy. Asian J Biomater Res. 2(2):62–5.

Dandawate PR, Vyas A, Ahmad A, Banerjee S, Deshpande J, Swamy KV. 2012. Inclusion complex of novel curcumin analogue CDF and β-cyclodextrin (1: 2) and its enhanced in vivo anticancer activity against pancreatic cancer. Pharm Res. 29(7):1775–86.

Daş, E., S. Alkan Gürsel, L. Işıkel Şanlı. 2016. Comparison of two different catalyst preparation methods for graphene nanoplatelets supported platinum catalysts. Int. J. Hydrogen Energy. 41(23): 9755–9761.

Eesam, S., Bhandaru, J.S., Naliganti, C., Bobbala, R.K., Akkinepally, R.R. 2020. Solubility enhancement of carvedilol using drug–drug cocrystallization with hydrochlorothiazide. Future J. Pharm. Sci. 6: 77.

Hiendrawan, S., Widjojokusumo, E., Veriansyah, B., Tjandrawinata, R.R. 2017. Pharmaceutical Salts of Carvedilol: Polymorphism and Physicochemical Properties. AAPS PharmSciTech 18: 1417–1425.

Khan, S., Ali, W., Rahman, N.U., Shah, S.M.M., Khan, J., Shah, S.M.H., Hussain, Z. 2016. Self-Assembled Biodegradable Polymeric Nanoparticles With Improved Solubility Of Carvedilol: Preparation, Characterisation And In Vitro Release Kinetics. Int. J. Pharm. Sci. Res. 7: 16.

Krstić, M., Manić, L., Martić, N., Vasiljević, D., Mračević, S.Đ., Vukmirović, S., Rašković, A. 2020. Binary polymeric amorphous carvedilol solid dispersions: In vitro and in vivo characterization. Eur. J. Pharm. Sci. 150: 105343.

Lee, S.N., Poudel, B.K., Tran, T.H., Marasini, N., Pradhan, R., Lee, Y.I., Lee, D.W., Woo, J.S., Choi, H.-G., Yong, C.S., Kim, J.O. 2013. A novel surface-attached carvedilol solid dispersion with enhanced solubility and dissolution. Arch. Pharm. Res. 36: 79–85.

Mittapalli S, Mannava MKC, Khandavilli UBR, Allu S, Nangia A. 2015. Soluble salts and cocrystals of clotrimazole. Cryst Growth Des. 15:2493–504.

Nguyen TA, Liu B, Zhao J, Thomas DS, Hook JM. 2013. An investigation into the supramolecular structure, solubility, stability and antioxidant activity of rutin/cyclodextrin inclusion complex. Food Chem. 136(1):186–92.

Nidhi K, Indrajeet S, KhushbooM, Gauri K, Sen DJ. 2011. Hydrotropy: a promising tool for solubility enhancement: a review. Int J Drug Dev Res.

Özçelik, N., Yurtcan, A., 2019. Drug loading with supercritical carbon dioxide deposition on different silica derivatives: Carvedilol study. J. Drug Deliv. Sci. Technol. 53: 101213.

Planinšek, O., Kovačič, B., Vrečer, F. 2011. Carvedilol dissolution improvement by preparation of solid dispersions with porous silica. Int. J. Pharm. 406: 41–48.

Sadr, M.H., Nabipour, H. 2013. Synthesis and identification of carvedilol nanoparticles by ultrasound method. J. Nanostructure Chem. 3: 26.

Sevukarajan M, Tanuja B. 2011. Synthesis and characterization of pharmaceutical cocrystals. (Aceclofenac-Nicotinamide). J Pharm Sci Res. 3:1288-93.

Shojaee, S.A., H. Rajaei, A.Z. Hezave. 2013. Experimental investigation and modeling of the solubility of carvedilol in supercritical carbon dioxide. J. Supercrit. Fluids 81. 42–47.

Tapas, A., Kawtikwar, P., Sakarkar, D. 2012. An Improvement In Physicochemical Properties of Carvedilol Through Speherically Agglomerated Solid Dispersions With PVP K30. Acta Poloniae Pharmaceutica - Drug Research. 69: 299 –308.

Thenge, R., Patel, R., Kayande, N., Mahajan, N. 2019. Co-Crystals of Carvedilol: Preparation, Characterization and Evaluation. Int. J. Appl. Pharm. 42–49.

Wang J, Cao Y, Sun B, Wang C. 2011. Characterisation of inclusion complex of trans-ferulic acid and hydroxypropyl-β-cyclodextrin. Food Chem. 124(3):1069–75.

Wang D, Chen G, Ren L. 2016. Preparation and characterization of the sulfobutylether-β-cyclodextrin inclusion complex of amiodarone hydrochloride with enhanced oral bioavailability in fasted state. AAPS PharmSciTech. 1–10.

Xu C, Tang Y, Hu W, Tian R, Jia Y, Deng P. 2014 Investigation of inclusion complex of honokiol with sulfobutyl ether-β-cyclodextrin. Carbohydr Polym. 113:9–15.

Zhang, Y., Zhi, Z., Li, X., Gao, J., Song, Y. 2013. Carboxylated mesoporous carbon microparticles as new approach to improve the oral bioavailability of poorly water-soluble carvedilol. Int. J. Pharm. 454: 403–411.

Zhao, J., Zhang, W., Sherrell, P., Razal, J.M., Huang, X., Minett, A.I., Chen, J., 2012. Carbon nanotube nanoweb–bioelectrode for highly selective dopamine sensing. Appl. Mater. Interfaces. 4: 44–48.

Zonghbi, A., Geng, T., Wang, B. 2017. Dual Activity of Hydroxypropyl-β-Cyclodextrin and Water-Soluble Carriers on the Solubility of Carvedilol. AAPS PharmSciTech.




DOI: https://doi.org/10.24198/farmaka.v20i1.33954

DOI (PDF): https://doi.org/10.24198/farmaka.v20i1.33954.g17346

Refbacks

  • Saat ini tidak ada refbacks.




Sitasi manajer:   

 

 

Jurnal ini diindeks dalam:

 

 

View My Stats 

ISSN: 1693-1424

e-ISSN: 2716-3075

 

Farmaka by Universitas Padjadjaran is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Copyright © 2013 Jurnal Farmaka - All Right Reserved