Potensi Kuersetin Nanoenkapsulasi Chitosan-Alginat Sebagai Kardioprotektor Melalui Modulasi Nrf-2: Review
Abstrak
Teks Lengkap:
PDFReferensi
Santosa WN, Baharuddin B. Penyakit Jantung Koroner dan Antioksidan. KELUWIH J Kesehat dan Kedokt. 2020;1(2):98–103.
Perdhana IS, Suzana D. Peran Kuersetin Terhadap Ekspresi Nrf2 Pada Stres Oksidatif Akibat Penyakit Ginjal Kronik. Inform Kedokt J Ilm [Internet]. 2019;(100):27–36. Available from: https://www.ejournal.gunadarma.ac.id/index.php/medif/article/view/2294
Nurlaela S, Aryani R, Hidayat AF. Studi Literatur Penggunaan Kitosan dan Natrium Alginat pada Nanoenkapsulasi Senyawa Antioksidan. Pros Farm. 2020;6(2):388–93.
Sandi S, Miksusanti, Mardiyanto, Yosi F, Liana Sari M. Preparation and Characterization of Bio-Polymeric Nano Feed Incorporating Silage-Derived Organic -Acids and the Polar Fraction of Papaya Leaf Extract. J Phys Conf Ser. 2018;1095(1).
Choiri, Martien, Dono ND, Zuprizal, Z. Biosintesis dan Karakterisasi Nanoenkapsulasi Ekstrak Buah Mengkudu (Morinda citrifolia) dengan kitosan-Sodium Tripolifosfat Sebagai Kandidat Antioksidan Alami. In: Prosiding Simposium Nasional, Penelitian dan Pengembangan Tropik. 2016. p. 22–8.
Ferdiansyah F, Heriyanto H, Wijaya CH, Limantara L. Pengaruh Metode Nanoenkapsulasi terhadap Stabilitas Pigmen Karotenoid dan Umur Simpan Minyak dari Buah Merah (Pandanus conoideus L). Agritech. 2017;37(4):369.
Nalini T, Basha SK, Mohamed Sadiq AM, Kumari VS, Kaviyarasu K. Development and characterization of alginate / chitosan nanoparticulate system for hydrophobic drug encapsulation. J Drug Deliv Sci Technol [Internet]. 2019;52:65–72. Available from: https://doi.org/10.1016/j.jddst.2019.04.002
Tayemeh MB, Kalbassi MR, Paknejad H, Joo HS. Dietary nanoencapsulated quercetin homeostated transcription of redox-status orchestrating genes in zebrafish (Danio rerio) exposed to silver nanoparticles. Environ Res [Internet]. 2020;185(March):109477. Available from: https://doi.org/10.1016/j.envres.2020.109477
Assadpour E, Mahdi Jafari S. A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Crit Rev Food Sci Nutr [Internet]. 2019;59(19):3129–51. Available from: https://doi.org/10.1080/10408398.2018.1484687
Mirpoor SF, Hosseini SMH, Nekoei AR. Efficient delivery of quercetin after binding to beta-lactoglobulin followed by formation soft-condensed core-shell nanostructures. Food Chem [Internet]. 2017;233:282–9. Available from: http://dx.doi.org/10.1016/j.foodchem.2017.04.126
Mukhopadhyay P, Maity S, Mandal S, Chakraborti AS, Prajapati AK, Kundu PP. Preparation, characterization and in vivo evaluation of pH sensitive, safe quercetin-succinylated chitosan-alginate core-shell-corona nanoparticle for diabetes treatment. Carbohydr Polym [Internet]. 2018;182(February):42–51. Available from: http://dx.doi.org/10.1016/j.carbpol.2017.10.098
Aluani D, Tzankova V, Kondeva-Burdina M, Yordanov Y, Nikolova E, Odzhakov F, et al. Еvaluation of Biocompatibility and Antioxidant Efficiency of Chitosan-Alginate Nanoparticles Loaded With Quercetin. Int J Biol Macromol [Internet]. 2017;103:771–82. Available from: http://dx.doi.org/10.1016/j.ijbiomac.2017.05.062
Kailaku SI, Mulyawanti I, Alamsyah AN. Formulation of Nanoencapsulated Catechin with Chitosan as Encapsulation Material. Procedia Chem [Internet]. 2014;9:235–41. Available from: http://dx.doi.org/10.1016/j.proche.2014.05.028
Suryani, Wahyuni, Ariastika D, Rahmanpiu. Formulasi Nanopartikel Kurkumin dengan Teknik Gelasi Ionik Menggunakan Kitosan, Tripolifosfat dan Natrium Alginat serta Uji Stabilitasnya Secara In Vitro. Pharmauho. 2016;2(1):17–21.
Lee YJ, Lee DM, Lee SH. Nrf2 expression and apoptosis in quercetin-treated malignant mesothelioma cells. Mol Cells. 2015;38(5):416–25.
Mansuri ML, Parihar P, Solanki I, Parihar MS. Flavonoids in modulation of cell survival signalling pathways. Genes Nutr. 2014;9(3).
Canning P, Sorrell FJ, Bullock AN. Structural basis of Keap1 interactions with Nrf2. Free Radic Biol Med [Internet]. 2015;88(Part B):101–7. Available from: http://dx.doi.org/10.1016/j.freeradbiomed.2015.05.034
Shu Z, Yang Y, Yang L, Jiang H, Yu X, Wang Y. Cardioprotective effects of dihydroquercetin against ischemia reperfusion injury by inhibiting oxidative stress and endoplasmic reticulum stress-induced apoptosis: Via the PI3K/Akt pathway. Food Funct. 2019;10(1):213–5.
Lozano O, Lázaro-Alfaro A, Silva-Platas C, Oropeza-Almazán Y, Torres-Quintanilla A, Bernal-Ramírez J, et al. Nanoencapsulated quercetin improves cardioprotection during hypoxia-reoxygenation injury through preservation of mitochondrial function. Oxid Med Cell Longev. 2019;2019.
Bhavnani BR, Cecutti A, Gerulath A, Woolever AC, Berco M. Comparison of the antioxidant effects of equine estrogens, red wine components, Vitamin E, and probucol on low-density lipoprotein oxidation in postmenopausal women. Menopause. 2018;25(11):1214–23.
Soliman AG, Mahmoud B, Eldin ZE, El-Shahawy AAG, Abdel-Gabbar M. Optimized synthesis characterization and protective activity of quercetin and quercetin–chitosan nanoformula against cardiotoxicity that was induced in male Wister rats via anticancer agent: doxorubicin. Cancer Nanotechnol [Internet]. 2023;14(1):1–29. Available from: https://doi.org/10.1186/s12645-023-00158-x
Aziz TA. Cardioprotective effect of quercetin and sitagliptin in doxorubicin-induced cardiac toxicity in rats. Cancer Manag Res. 2021;13:2349–57.
Sharma A, Parikh M, Shah H, Gandhi T. Modulation of Nrf2 by quercetin in doxorubicin-treated rats. Heliyon [Internet]. 2020;6(4):e03803. Available from: https://doi.org/10.1016/j.heliyon.2020.e03803
Albadrani GM, BinMowyna MN, Bin-Jumah MN, El–Akabawy G, Aldera H, AL-Farga AM. Quercetin prevents myocardial infarction adverse remodeling in rats by attenuating TGF-β1/Smad3 signaling: Different mechanisms of action. Saudi J Biol Sci [Internet]. 2021;28(5):2772–82. Available from: https://doi.org/10.1016/j.sjbs.2021.02.007
Castillo RL, Herrera EA, Gonzalez-Candia A, Reyes-Farias M, De La Jara N, Peña JP, et al. Quercetin Prevents Diastolic Dysfunction Induced by a High-Cholesterol Diet: Role of Oxidative Stress and Bioenergetics in Hyperglycemic Rats. Oxid Med Cell Longev. 2018;2018.
Silva-Palacios A, Königsberg M, Zazueta C. Nrf2 signaling and redox homeostasis in the aging heart: A potential target to prevent cardiovascular diseases? Ageing Res Rev. 2016;26:81–95.
Javkhedkar AA, Quiroz Y, Rodriguez-Iturbe B, Vaziri ND, Lokhandwala MF, Banday AA. Resveratrol restored Nrf2 function, reduced renal inflammation, and mitigated hypertension in spontaneously hypertensive rats. Am J Physiol - Regul Integr Comp Physiol. 2015;308(10):R840–6.
Erkens R, Kramer CM, Lückstädt W, Panknin C, Krause L, Weidenbach M, et al. Left ventricular diastolic dysfunction in Nrf2 knock out mice is associated with cardiac hypertrophy, decreased expression of SERCA2a, and preserved endothelial function. Free Radic Biol Med [Internet]. 2015;89:906–17. Available from: http://dx.doi.org/10.1016/j.freeradbiomed.2015.10.409
Hybertson BM, Gao B, Bose SK, McCord JM. Oxidative stress in health and disease: The therapeutic potential of Nrf2 activation. Mol Aspects Med [Internet]. 2011;32(4–6):234–46. Available from: http://dx.doi.org/10.1016/j.mam.2011.10.006
MacRitchie N, Volpert G, Al Washih M, Watson DG, Futerman AH, Kennedy S, et al. Effect of the sphingosine kinase 1 selective inhibitor, PF-543 on arterial and cardiac remodelling in a hypoxic model of pulmonary arterial hypertension. Cell Signal [Internet]. 2016;28(8):946–55. Available from: http://dx.doi.org/10.1016/j.cellsig.2016.03.014
Barančík M, Grešová L, Barteková M, Dovinová I. Nrf2 as a key player of redox regulation in cardiovascular diseases. Physiol Res. 2016;65:S1–10.
Das A, Bhavani G, Voss OH, Doseff AI, Villamena FA. Inhibition of ROS-induced apoptosis in endothelial cells by nitrone spin traps via induction of phase II enzymes and suppression of mitochondria-dependent pro-apoptotic signaling. Biochem Pharmacol [Internet]. 2012;84(4):486-. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf
Griecsová L, Farkašová V, Gáblovskỳ I, Khandelwal VKM, Bernátová I, Tatarková Z, et al. Effect of maturation on the resistance of rat hearts against ischemia. Study of potential molecular mechanisms. Physiol Res. 2015;64:S685–96.
DOI: https://doi.org/10.24198/farmaka.v21i2.46544
DOI (PDF): https://doi.org/10.24198/farmaka.v21i2.46544.g20650
Refbacks
- Saat ini tidak ada refbacks.
Sitasi manajer:
Jurnal ini diindeks dalam:
Farmaka by Universitas Padjadjaran is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright © 2013 Jurnal Farmaka - All Right Reserved