Perkembangan Teknologi Terkini dalam Mempercepat Produksi Vaksin COVID-19
Abstrak
Pada akhir tahun 2019, terjadi suatu pandemi yang berasal dari Cina tepatnya di kota Wuhan. Pandemi tersebut dikenal dengan covid-19. Covid-19 disebabkan oleh SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2). Jika dibandingkan dengan SARS pada 2003 dan MERS pada 2012, penyebaran pandemi ini jauh lebih cepat. Hingga saat ini sudah lebih dari 6,2 juta kasus positif yang dilaporkan. Sampai saat ini belum ditemukannya vaksin sebagai agen penekan penyebarannya. Pembuatan vaksin baru pada umumnya membutuhkan waktu yang lama yaitu dapat mencapai 10 tahun. Review ini bertujuan untuk membahas berbagai teknologi pembuatan vaksin dan menunjukkan teknologi yang dapat mempercepat produksi vaksin covid-19. Metode yang digunakan pada review ini adalah studi literatur secara online dengan mengakses beberapa situs jurnal internasional. Semua jenis teknologi pembuatan vaksin memiliki kelebihan dan kekurangan. Ditinjau dari kecepatannya, dapat diambil kesimpulan bahwa vaksin berbasis RNA memiliki kecepatan dalam memperoleh urutan data patogen dan tidak membutuhkan kultur sehingga dapat diproduksi dengan cepat.
Kata Kunci
Teks Lengkap:
PDFReferensi
. Zhang J, Zeng H, Gu J, Li H, Zheng L, Zou Q. Progress and prospects on vaccine development against sars-cov-2. Vaccines. 2020;8(2):1–12. https://doi.org/10.3390/vaccines8020153
. Phan T. Novel coronavirus: From discovery to clinical diagnostics. Infect Genet Evol. 2020;79:104211. https://doi.org/10.1016/j.meegid.2020.104211
. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (80- ). 2020;367(6483):1260–3. https://doi.org/10.1126/science.aax0902
. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052
. Pang J, Wang MX, Ang IYH, Tan SHX, Lewis RF, Chen JI-P, et al. Potential Rapid Diagnostics, Vaccine and Therapeutics for 2019 Novel Coronavirus (2019-nCoV): A Systematic Review. J Clin Med. 2020;9(3):623. https://doi.org/10.3390/jcm9030623
. Liu C, Zhou Q, Li Y, Garner L V., Watkins SP, Carter LJ, et al. Research and Development on Therapeutic Agents and Vaccines for COVID-19 and Related Human Coronavirus Diseases. ACS Cent Sci. 2020;6(3):315–31. https://doi.org/10.1021/acscentsci.0c00272
. Orensteina WA, Ahmedb R. Simply put: Vaccination saves lives. Proc Natl Acad Sci U S A. 2017;114(16):4031–3. https://doi.org/10.1073/pnas.1704507114
. Czochor J, Turchick A. Introduction. Yale J Biol Med. 2014;87(4):401–2.
. Lee HJ, Choi JH. Tetanus–diphtheria–acellular pertussis vaccination for adults: An update. Clin Exp Vaccine Res. 2017;6(1):22–30. https://doi.org/10.7774/cevr.2017.6.1.22
. Amanat F, Krammer F. SARS-CoV-2 Vaccines: Status Report. Immunity. 2020;52(4):583–9. https://doi.org/10.1016/j.immuni.2020.03.007
. WHO. Draft landscape of COVID-19 candidate vaccines [Internet]. [cited 2020 Jun 2]. Available from: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines
. Thanh Le T, Andreadakis Z, Kumar A, Gómez Román R, Tollefsen S, Saville M, et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov. 2020;19(5):305–6. https://doi.org/10.1038/d41573-020-00073-5
. Boxberger et al. 2008. 基因的改变NIH Public Access. Bone. 2008;23(1):1–7. https://doi.org/10.1038/jid.2014.371
. Calina D, Docea AO, Petrakis D, Egorov AM, Ishmukhametov AA, Gabibov AG, et al. Towards effective COVID‑19 vaccines: Updates, perspectives and challenges (Review). Int J Mol Med. 2020;(May). https://doi.org/10.3892/ijmm.2020.4596
. Abramo JM, Reynolds A, Crisp GT, Weurlander M, Söderberg M, Scheja M, et al. Individuality in music performance. Assess Eval High Educ. 2012;37(October):435. https://doi.org/10.1007/82
. Food and Drug Administration. Vaccines Lisenced for Use in the United State [Internet]. [cited 2020 May 27]. Available from: https://www.fda.gov/biologicsbloodvaccines/vaccines/approvedproducts/
. Herrera-Rodriguez J, Signorazzi A, Holtrop M, de Vries-Idema J, Huckriede A. Inactivated or damaged? Comparing the effect of inactivation methods on influenza virions to optimize vaccine production. Vaccine. 2019;37(12):1630–7. https://doi.org/10.1016/j.vaccine.2019.01.086
. Halstead SB, Thomas SJ. New Japanese encephalitis vaccines: Alternatives to production in mouse brain. Expert Rev Vaccines. 2011;10(3):355–64. https://doi.org/10.1586/erv.11.7
. Jarmer J, Zlatkovic J, Tsouchnikas G, Vratskikh O, Strauss J, Aberle JH, et al. Variation of the Specificity of the Human Antibody Responses after Tick-Borne Encephalitis Virus Infection and Vaccination. J Virol. 2014;88(23):13845–57. https://doi.org/10.1128/jvi.02086-14
. Tseng C Te, Sbrana E, Iwata-Yoshikawa N, Newman PC, Garron T, Atmar RL, et al. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS One. 2012;7(4). https://doi.org/10.1371/journal.pone.0035421
. Furuya Y, Regner M, Lobigs M, Koskinen A, Müllbacher A, Alsharifi M. Effect of inactivation method on the cross-protective immunity induced by whole “killed” influenza A viruses and commercial vaccine preparations. J Gen Virol. 2010;91(6):1450–60. https://doi.org/10.1099/vir.0.018168-0
. Jonges M, Liu WM, Van Der Vries E, Jacobi R, Pronk I, Boog C, et al. Influenza virus inactivation for studies of antigenicity and phenotypic neuraminidase inhibitor resistance profiling. J Clin Microbiol. 2010;48(3):928–40. https://doi.org/10.1128/JCM.02045-09
. Luo F, Liao FL, Wang H, Tang H Bin, Yang ZQ, Hou W. Evaluation of Antibody-Dependent Enhancement of SARS-CoV Infection in Rhesus Macaques Immunized with an Inactivated SARS-CoV Vaccine. Virol Sin. 2018;33(2):201–4. https://doi.org/10.1007/s12250-018-0009-2
. Martin JE, Louder MK, Holman LSA, Gordon IJ, Enama ME, Larkin BD, et al. A SARS DNA vaccine induces neutralizing antibody and cellular immune responses in healthy adults in a Phase I clinical trial. Vaccine. 2008;26(50):6338–43. https://doi.org/10.1016/j.vaccine.2008.09.026
. Polio Global Eradication Initiative. Oral Polio Vaccine [Internet]. [cited 2020 May 26]. Available from: http://polioeradication.org/polio-today/preparing-for-a-polio-free-world/opv-cessation/
. Hawksworth A, Jayachander M, Hester S, Mohammed S, Hutchinson E. Proteomics as a tool for live attenuated influenza vaccine characterisation. Vaccine. 2020;38(4):868–77. https://doi.org/10.1016/j.vaccine.2019.10.082
. Netland J, DeDiego ML, Zhao J, Fett C, Álvarez E, Nieto-Torres JL, et al. Immunization with an attenuated severe acute respiratory syndrome coronavirus deleted in E protein protects against lethal respiratory disease. Virology. 2010;399(1):120–8. https://doi.org/10.1016/j.virol.2010.01.004
. Bande F, Arshad SS, Hair Bejo M, Moeini H, Omar AR. Progress and challenges toward the development of vaccines against avian infectious bronchitis. J Immunol Res. 2015;2015. https://doi.org/10.1155/2015/424860
. Ura T, Okuda K, Shimada M. Developments in viral vector-based vaccines. Vaccines. 2014;2(3):624–41. https://doi.org/10.3390/vaccines2030624
. Ertl HCJ. New rabies vaccines for use in humans. Vaccines. 2019;7(2):1–11. https://doi.org/10.3390/vaccines7020054
. Gilbert SC, Warimwe GM. Rapid development of vaccines against emerging pathogens: The replication-deficient simian adenovirus platform technology. Vaccine. 2017;35(35):4461–4. https://doi.org/10.1016/j.vaccine.2017.04.085
. Barouch DH. Novel adenovirus vector-based vaccines for HIV-1. Curr Opin HIV AIDS. 2010;5(5):386–90. https://doi.org/10.1097/COH.0b013e32833cfe4c
. Schuldt NJ, Amalfitano A. Malaria vaccines: Focus on adenovirus based vectors. Vaccine. 2012;30(35):5191–8. https://doi.org/10.1016/j.vaccine.2012.05.048
. Choi IK, Yun CO. Recent developments in oncolytic adenovirus-based immunotherapeutic agents for use against metastatic cancers. Cancer Gene Ther. 2013;20(2):70–6. https://doi.org/10.1038/cgt.2012.95
. Choi Y, Chang J. Viral vectors for vaccine applications. Clin Exp Vaccine Res. 2013;2(2):97. https://doi.org/10.7774/cevr.2013.2.2.97
. Delany I, Rappuoli R, Seib KL. Vaccines, reverse vaccinology, and bacterial pathogenesis. Cold Spring Harb Perspect Med. 2013;3(5). https://doi.org/10.1101/cshperspect.a012476
. Delany I, Rappuoli R, De Gregorio E. Vaccines for the 21st century. EMBO Mol Med. 2014;6(6):708–20. https://doi.org/10.1002/emmm.201403876
. Hasson SSAA, Al-Busaidi JKZ, Sallam TA. The past, current and future trends in DNA vaccine immunisations. Asian Pac J Trop Biomed. 2015;5(5):344–53. https://doi.org/10.1016/S2221-1691(15)30366-X
. Ulmer JB, Mason PW, Geall A, Mandl CW. RNA-based vaccines. Vaccine. 2012;30(30):4414–8. https://doi.org/10.1016/j.vaccine.2012.04.060
. Sardesai NY, Weiner DB. Electroporation delivery of DNA vaccines: Prospects for success. Curr Opin Immunol. 2011;23(3):421–9. https://doi.org/10.1016/j.coi.2011.03.008
. Dowd KA, Ko SY, Morabito KM, Yang ES, Pelc RS, DeMaso CR, et al. Rapid development of a DNA vaccine for Zika virus. Science (80- ). 2016;354(6309):237–40. https://doi.org/10.1126/science.aai9137
. Pardi N, Hogan MJ, Weissman D. Recent advances in mRNA vaccine technology. Curr Opin Immunol. 2020;65:14–20. https://doi.org/10.1016/j.coi.2020.01.008
. Pereira VB, Zurita-Turk M, Saraiva TDL, De Castro CP, Souza BM, Mancha Agresti P, et al. DNA Vaccines Approach: From Concepts to Applications. World J Vaccines. 2014;04(02):50–71. https://doi.org/10.4236/wjv.2014.42008
. Maruggi G, Zhang C, Li J, Ulmer JB, Yu D. mRNA as a Transformative Technology for Vaccine Development to Control Infectious Diseases. Mol Ther. 2019;27(4):757–72. https://doi.org/10.1016/j.ymthe.2019.01.020
. Tregoning JS, Kinnear E. Using Plasmids as DNA Vaccines for Infectious Diseases. Microbiol Spectr. 2014;2(6). https://doi.org/10.1128/microbiolspec.plas-0028-2014
. Wang F, Kream RM, Stefano GB. An evidence based perspective on mRNA-SARScov-2 vaccine development. Med Sci Monit. 2020;26:1–8. https://doi.org/10.12659/MSM.924700
. Knights AJ, Nuber N, Thomson CW, De La Rosa O, Jäger E, Tiercy JM, et al. Modified tumour antigen-encoding mRNA facilitates the analysis of naturally occurring and vaccine-induced CD4 and CD8 T cells in cancer patients. Cancer Immunol Immunother. 2009;58(3):325–38. https://doi.org/10.1007/s00262-008-0556-8
. Zarghampoor F, Azarpira N, Khatami SR, Behzad-Behbahani A, Foroughmand AM. Improved translation efficiency of therapeutic mRNA. Gene. 2019;707(February):231–8. https://doi.org/10.1016/j.gene.2019.05.008
. Vogel AB, Lambert L, Kinnear E, Busse D, Erbar S, Reuter KC, et al. Self-Amplifying RNA Vaccines Give Equivalent Protection against Influenza to mRNA Vaccines but at Much Lower Doses. Mol Ther. 2018;26(2):446–55. https://doi.org/10.1016/j.ymthe.2017.11.017
. Sahin U, Karikó K, Türeci Ö. MRNA-based therapeutics-developing a new class of drugs. Nat Rev Drug Discov. 2014;13(10):759–80. https://doi.org/10.1038/nrd4278
. Sebastian M, Schröder A, Scheel B, Hong HS, Muth A, von Boehmer L, et al. A phase I/IIa study of the mRNA-based cancer immunotherapy CV9201 in patients with stage IIIB/IV non-small cell lung cancer. Cancer Immunol Immunother. 2019;68(5):799–812. https://doi.org/10.1007/s00262-019-02315-x
Refbacks
- Saat ini tidak ada refbacks.