Microneedle: Teknologi Baru Penghantar Vaksin COVID-19
Abstrak
Wabah COVID-19 telah menyebar lebih dari 200 negara dan menjadi perhatian kesehatan di seluruh dunia. SARS-CoV-2 adalah virus penyebab COVID-19 berasal dari keluarga coronaviridae. Virus tersebut memiliki kesamaan genom dengan SARS-CoV dan MERS-CoV. Vaksinasi merupakan cara yang paling efektif untuk mencegah pernyebaran virus COVID-19. Sebagian besar pemberian vaksin menggunakan jarum konvensional, jarum hipodermik, yang tidak bisa digunakan dengan mudah oleh pasien. Selain itu, penggunaan jarum hipodermik dapat menimbulkan rasa sakit. Maka, jarum dibentuk dengan ukuran mikron, sehingga penetrasinya tidak mencapai ujung saraf yang peka terhadap nyeri. Microneedle dapat digunakan sendiri tanpa rasa sakit dan melalui mekanisme stress mekanikal dari microneedle dapat digunakan sebagai adjuvant dalam meningkatkan respon imun. Microneedle merupakan teknologi vaksinasi baru yang aman dan memberikan kekebalan protektif terhadap serangan virus COVID-19. Termostabil yang diberikan oleh microneedle dapat mengurangi penggunaan pendingin, sehingga mengurangi biaya produksi dan meningkatkan kemudahan dalam pendistribusiannya. Berdasarkan fitur-fitur tersebut, microneedle memiliki potensi untuk digunakan sebagai penghantar vaksin yang efektif dalam mencegah penyebaran virus COVID-19.
Kata Kunci
Teks Lengkap:
PDFReferensi
Kim E, Erdos G, Huang S, Kenniston TW, Balmert SC, Carey CD, et al. Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development. EBioMedicine [Internet]. 2020;000:102743. Available from: https://doi.org/10.1016/j.ebiom.2020.102743
Zhou P, Yang X Lou, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature [Internet]. 2020;579(7798):270–3. Available from: http://dx.doi.org/10.1038/s41586-020-2012-7
Zaki AM, Van Boheemen S, Bestebroer TM, Osterhaus ADME, Fouchier RAM. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367(19):1814–20.
Ahmed SF, Quadeer AA, McKay MR. Preliminary identification of potential vaccine targets for the COVID-19 Coronavirus (SARS-CoV-2) Based on SARS-CoV Immunological Studies. Viruses. 2020;12(3).
Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev [Internet]. 2012;64(14):1547–68. Available from: http://dx.doi.org/10.1016/j.addr.2012.04.005
Master AM, Rodriguez ME, Kenney ME, Oleinick NL, Sen Gupta A. Delivery of the photosensitizer Pc 4 in PEG–PCL micelles for in vitro PDT studies. J Pharm Sci. 2010;99(5):2386–2398.
Balmert SC, Carey CD, Falo GD, Sethi SK, Erdos G, Korkmaz E, et al. Dissolving undercut microneedle arrays for multicomponent cutaneous vaccination. J Control Release [Internet]. 2020;317:336–46. Available from: https://doi.org/10.1016/j.jconrel.2019.11.023
Korkmaz E, Friedrich EE, Ramadan MH, Erdos G, Mathers AR, Burak Ozdoganlar O, et al. Therapeutic intradermal delivery of tumor necrosis factor-alpha antibodies using tip-loaded dissolvable microneedle arrays. Acta Biomater [Internet]. 2015;24:96–105. Available from: http://dx.doi.org/10.1016/j.actbio.2015.05.036
Suh H, Shin J, Kim Y-C. Microneedle patches for vaccine delivery. Clin Exp Vaccine Res. 2014;3(1):42.
Woo PCY, Lau SKP, Lam CSF, Lau CCY, Tsang AKL, Lau JHN, et al. Discovery of Seven Novel Mammalian and Avian Coronaviruses in the Genus Deltacoronavirus Supports Bat Coronaviruses as the Gene Source of Alphacoronavirus and Betacoronavirus and Avian Coronaviruses as the Gene Source of Gammacoronavirus and Deltacoronavi. J Virol. 2012;86(7):3995–4008.
NCIRD. Coronavirus [Internet]. 2020 [cited 2020 Jun 4]. Available from: https://www.cdc.gov/coronavirus/types.html
Lau SKP, Li KSM, Huang Y, Shek C-T, Tse H, Wang M, et al. Ecoepidemiology and Complete Genome Comparison of Different Strains of Severe Acute Respiratory Syndrome-Related Rhinolophus Bat Coronavirus in China Reveal Bats as a Reservoir for Acute, Self-Limiting Infection That Allows Recombination Events. J Virol. 2010;84(6):2808–19.
Jiaming L, Yanfeng Y, Yao D, Yawei H, Linlin B, Baoying H, et al. The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Vaccine [Internet]. 2017;35(1):10–8. Available from: http://dx.doi.org/10.1016/j.vaccine.2016.11.064
Chen HW, Huang CY, Lin SY, Fang ZS, Hsu CH, Lin JC, et al. Synthetic virus-like particles prepared via protein corona formation enable effective vaccination in an avian model of coronavirus infection. Biomaterials [Internet]. 2016;106:111–8. Available from: http://dx.doi.org/10.1016/j.biomaterials.2016.08.018
McLenon J, Rogers MAM. The fear of needles: A systematic review and meta-analysis. Vol. 75, Journal of Advanced Nursing. 2019. 30–42 p.
Hoang MT, Ita KB, Bair DA. Solid microneedles for transdermal delivery of amantadine hydrochloride and pramipexole dihydrochloride. Pharmaceutics. 2015;7(4):379–96.
Bariya SH, Gohel MC, Mehta TA, Sharma OP. Microneedles: An emerging transdermal drug delivery system. J Pharm Pharmacol. 2012;64(1):11–29.
Chong RHE, Gonzalez-Gonzalez E, Lara MF, Speaker TJ, Contag CH, Kaspar RL, et al. Gene silencing following siRNA delivery to skin via coated steel microneedles: In vitro and in vivo proof-of-concept. J Control Release [Internet]. 2013;166(3):211–9. Available from: http://dx.doi.org/10.1016/j.jconrel.2012.12.030
Donnelly RF, Majithiya R, Singh TRR, Morrow DIJ, Garland MJ, Demir YK, et al. Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm Res. 2011;28(1):41–57.
Marshall S, Sahm LJ, Moore AC. The success of microneedle-mediated vaccine delivery into skin. Hum Vaccines Immunother. 2016;12(11):2975–83.
Kim YC, Quan FS, Compans RW, Kang SM, Prausnitz MR. Formulation and coating of microneedles with inactivated influenza virus to improve vaccine stability and immunogenicity. J Control Release [Internet]. 2010;142(2):187–95. Available from: http://dx.doi.org/10.1016/j.jconrel.2009.10.013
Ito Y, Hasegawa R, Fukushima K, Sugioka N, Takada K. Self-dissolving micropile array chip as percutaneous delivery system of protein drug. Biol Pharm Bull. 2010;33(4):683–90.
Ito Y, Maeda T, Fukushima K, Sugioka N, Takada K. Permeation enhancement of ascorbic acid by self-dissolving micropile array tip through rat skin. Chem Pharm Bull. 2010;58(4):458–63.
Raphael AP, Prow TW, Crichton ML, Chen X, Fernando GJP, Kendall MAF. Targeted, needle-free vaccinations in skin using multilayered, densely-packed dissolving microprojection arrays. Small. 2010;6(16):1785–93.
Chu LY, Prausnitz MR. Separable arrowhead microneedles. J Control Release [Internet]. 2011;149(3):242–9. Available from: http://dx.doi.org/10.1016/j.jconrel.2010.10.033
Quan FS, Kim YC, Compans RW, Prausnitz s MR, Kang SM. Dose sparing enabled by skin immunization with influenza virus-like particle vaccine using microneedles. J Control Release [Internet]. 2010;147(3):326–32. Available from: http://dx.doi.org/10.1016/j.jconrel.2010.07.125
Kim YC, Quan FS, Compans RW, Kang SM, Prausnitz MR. Stability kinetics of influenza vaccine coated onto microneedles during drying and storage. Pharm Res. 2011;28(1):135–44.
Choi HJ, Yoo DG, Bondy BJ, Quan FS, Compans RW, Kang SM, et al. Stability of influenza vaccine coated onto microneedles. Biomaterials [Internet]. 2012;33(14):3756–69. Available from: http://dx.doi.org/10.1016/j.biomaterials.2012.01.054
Park K. Improving the reach of vaccines to low-resource regions with a needle-free vaccine delivery device and long-term thermostabilization. J Control Release [Internet]. 2011;152(3):329. Available from: http://dx.doi.org/10.1016/j.jconrel.2011.05.015
Rouphael NG, Paine M, Mosley R, Henry S, McAllister D V., Kalluri H, et al. The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): a randomised, partly blinded, placebo-controlled, phase 1 trial. Lancet. 2017;390(10095):649–58.
Mistilis MJ, Joyce JC, Esser ES, Skountzou I, Compans RW, Bommarius AS, et al. Long-term stability of influenza vaccine in a dissolving microneedle patch. Drug Deliv Transl Res. 2017;7(2):195–205.
Donadei A, Kraan H, Ophorst O, Flynn O, O’Mahony C, Soema PC, et al. Skin delivery of trivalent Sabin inactivated poliovirus vaccine using dissolvable microneedle patches induces neutralizing antibodies. J Control Release [Internet]. 2019;311–312(August):96–103. Available from: https://doi.org/10.1016/j.jconrel.2019.08.039
Nakatsukasa A, Kuruma K, Okamatsu M, Hiono T, Suzuki M, Matsuno K, et al. Potency of whole virus particle and split virion vaccines using dissolving microneedle against challenges of H1N1 and H5N1 influenza viruses in mice. Vaccine [Internet]. 2017;35(21):2855–61. Available from: http://dx.doi.org/10.1016/j.vaccine.2017.04.009
van der Maaden K, Heuts J, Camps M, Pontier M, Terwisscha van Scheltinga A, Jiskoot W, et al. Hollow microneedle-mediated micro-injections of a liposomal HPV E743–63 synthetic long peptide vaccine for efficient induction of cytotoxic and T-helper responses. J Control Release [Internet]. 2018;269:347–54. Available from: http://dx.doi.org/10.1016/j.jconrel.2017.11.035
Bal SM, Ding Z, Kersten GFA, Jiskoot W, Bouwstra JA. Microneedle-based transcutaneous immunisation in mice with n-trimethyl chitosan adjuvanted diphtheria toxoid formulations. Pharm Res. 2010;27(9):1837–47.
Kim E, Okada K, Kenniston T, Raj VS, AlHajri MM, Farag EABA, et al. Immunogenicity of an adenoviral-based Middle East Respiratory Syndrome coronavirus vaccine in BALB/c mice. Vaccine [Internet]. 2014;32(45):5975–82. Available from: http://dx.doi.org/10.1016/j.vaccine.2014.08.058
Depelsenaire ACI, Meliga SC, Mcneilly CL, Pearson FE, Coffey JW, Haigh OL, et al. Colocalization of cell death with antigen deposition in skin enhances vaccine immunogenicity. J Invest Dermatol [Internet]. 2014;134(9):2361–70. Available from: http://dx.doi.org/10.1038/jid.2014.174
Refbacks
- Saat ini tidak ada refbacks.