Peptida Antimikrobial Cathelicidin dan Liposom sebagai Pembawa

Mayang Kusuma Dewi, Anis Yohana Chaerunisaa, Sriwidodo Sriwidodo

Abstrak

Peptida antimikrobial (PAM) dalam beberapa tahun terakhir telah menarik perhatian di kalangan ilmuwan, profesional kesehatan, dan perusahaan farmasi karena potensi terapeutiknya yang sangat luas. Cathelicidin merupakan salah satu kelompok dari PAM dengan berat molekul rendah yang mempunyai berbagai aktivitas biologis pada rentang terapi tertentu yang berfungsi sebagai antimikrobial, antivirus, dan antijamur, serta dapat memodulasi sistem imum terhadap infeksi bakteri (gram positif dan gram negatif). Walaupun menarik untuk aplikasi klinis, cathelicidin memiliki keterbatasan dalam hal stabilitas dan aktivitasnya secara in-vivo, serta interaksi non-spesifik dengan membran biologis inang yang mengarah pada efek sitotoksik yang merugikan. Enkapsulasi cathelicidin dapat mengakibatkan penurunan sitotoksisitas, meningkatkan stabilitas dan aktivitas biologisnya. Keterbatasan cathelicidin dapat diatasi dengan mengenkapsulasi cathelicidin dalam pembawa lipid seperti liposom. Review ini bertujuan untuk memberikan gambaran singkat mengenai struktur, sifat, fungsi, uji klinis, dan keterbatasan dari cathelicidin yang mana keterbatasan cathelicidin ini dapat di atasi dengan pembawa vesikular salah satunya adalah liposom. Liposom merupakan pembawa vesikular generasi pertama yang bersifat non-toksik, biodegradable, biokompatibel, dan stabil dalam larutan koloid sistem penghantaran obat. Sistem liposom dapat melindungi peptida yang dienkapsulasi dari degradasi protease. Selain itu, pembawa liposom disajikan sebagai alternatif yang menjanjikan untuk mengoptimalkan pemberian cathelicidin dalam hal dosis, pola pengiriman, dan keamanan.

Kata Kunci

Cathelicidin, sifat cathelicidin, sturktur cathelicidin, mekanisme cathelicidin, keterbatasan cathelicidin, liposom

Teks Lengkap:

PDF

Referensi

Agier J, Efenberger M, Brzezińska-Błaszczyk E. Review paper Cathelicidin impact on inflammatory cells. Cent Eur J Immunol [Internet]. 2015;2(2):225–35. Available from: http://www.termedia.pl/doi/10.5114/ceji.2015.51359

Phoenix DA, Dennison SR, Harris F. Antimicrobial Peptides: Their History, Evolution, and Functional Promiscuity. In: Antimicrobial Peptides [Internet]. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2013. p. 1–37. Available from: http://doi.wiley.com/10.1002/9783527652853.ch1

Bals R. Epithelial antimicrobial peptides in host defense against infection. Respir Res [Internet]. 2000 Dec 20;1(3):5. Available from: http://respiratory-research.biomedcentral.com/articles/10.1186/rr25

Amer LS, Bishop BM, van Hoek ML. Antimicrobial and antibiofilm activity of cathelicidins and short, synthetic peptides against Francisella. Biochem Biophys Res Commun [Internet]. 2010 May;396(2):246–51. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0006291X10007424

de Latour FA, Amer LS, Papanstasiou EA, Bishop BM, Hoek ML van. Antimicrobial activity of the Naja atra cathelicidin and related small peptides. Biochem Biophys Res Commun [Internet]. 2010 Jun;396(4):825–30. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0006291X10008661

Kanthawong S, Bolscher JGM, Veerman ECI, van Marle J, de Soet HJJ, Nazmi K, et al. Antimicrobial and antibiofilm activity of LL-37 and its truncated variants against Burkholderia pseudomallei. Int J Antimicrob Agents [Internet]. 2012 Jan;39(1):39–44. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0924857911003712

Eckert R. Road to clinical efficacy: challenges and novel strategies for antimicrobial peptide development. Future Microbiol [Internet]. 2011 Jun;6(6):635–51. Available from: https://www.futuremedicine.com/doi/10.2217/fmb.11.27

Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front Cell Infect Microbiol [Internet]. 2016 Dec 27;6. Available from: http://journal.frontiersin.org/article/10.3389/fcimb.2016.00194/full

Nordström R, Malmsten M. Delivery systems for antimicrobial peptides. Adv Colloid Interface Sci [Internet]. 2017 Apr;242:17–34. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0001868616303700

Chou H-T, Kuo T-Y, Chiang J-C, Pei M-J, Yang W-T, Yu H-C, et al. Design and synthesis of cationic antimicrobial peptides with improved activity and selectivity against Vibrio spp. Int J Antimicrob Agents [Internet]. 2008 Aug;32(2):130–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S092485790800160X

Umerska A, Cassisa V, Bastiat G, Matougui N, Nehme H, Manero F, et al. Synergistic interactions between antimicrobial peptides derived from plectasin and lipid nanocapsules containing monolaurin as a cosurfactant against Staphylococcus aureus. Int J Nanomedicine [Internet]. 2017 Aug;Volume 12:5687–99. Available from: https://www.dovepress.com/synergistic-interactions-between-antimicrobial-peptides-derived-from-p-peer-reviewed-article-IJN

Sun L, Zheng C, Webster T. Self-assembled peptide nanomaterials for biomedical applications: promises and pitfalls. Int J Nanomedicine [Internet]. 2016 Dec;Volume 12:73–86. Available from: https://www.dovepress.com/self-assembled-peptide-nanomaterials-for-biomedical-applications-promi-peer-reviewed-article-IJN

Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine [Internet]. 2017 Feb;12:1227–49. Available from: https://www.dovepress.com/the-antimicrobial-activity-of-nanoparticles-present-situation-and-pros-peer-reviewed-article-IJN

Garcia-Orue I, Gainza G, Girbau C, Alonso R, Aguirre JJ, Pedraz JL, et al. LL37 loaded nanostructured lipid carriers (NLC): A new strategy for the topical treatment of chronic wounds. Eur J Pharm Biopharm [Internet]. 2016 Nov;108:310–6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0939641116301308

Patel K, Chauhan D, Sodha R, Vadhwani K, Daxini K. Dermal Delivery of Protein and Peptides: Recent advances and clinical outcome. PharmaTutor. 2019;7(7):21–31.

McCrudden MTC, McLean DTF, Zhou M, Shaw J, Linden GJ, Irwin CR, et al. The Host Defence Peptide LL-37 is Susceptible to Proteolytic Degradation by Wound Fluid Isolated from Foot Ulcers of Diabetic Patients. Int J Pept Res Ther [Internet]. 2014 Dec 17;20(4):457–64. Available from: http://link.springer.com/10.1007/s10989-014-9410-3

Larrick JW, Hirata M, Balint RF, Lee J, Zhong J, Wright SC. Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. Infect Immun [Internet]. 1995;63(4):1291–7. Available from: https://iai.asm.org/content/63/4/1291

Duplantier AJ, van Hoek ML. The Human Cathelicidin Antimicrobial Peptide LL-37 as a Potential Treatment for Polymicrobial Infected Wounds. Front Immunol [Internet]. 2013;4(143). Available from: http://journal.frontiersin.org/article/10.3389/fimmu.2013.00143/abstract

Bandurska K, Berdowska A, Barczyńska-Felusiak R, Krupa P. Unique features of human cathelicidin LL-37. BioFactors [Internet]. 2015 Sep 10;41(5):289–300. Available from: http://doi.wiley.com/10.1002/biof.1225

Steinmann J. Induction and regulation of CAMP gene expression. University of Iceland; 2008.

Sørensen O, Cowland JB, Askaa J, Borregaard N. An ELISA for hCAP-18, the cathelicidin present in human neutrophils and plasma. J Immunol Methods. 1997 Aug;206(1–2):53–9.

Stapels DAC, Geisbrecht B V., Rooijakkers SHM. Neutrophil serine proteases in antibacterial defense. Curr Opin Microbiol [Internet]. 2015 Feb;23:42–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1369527414001611

Sørensen OE, Follin P, Johnsen AH, Calafat J, Tjabringa GS, Hiemstra PS, et al. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood [Internet]. 2001 Jun 15;97(12):3951–9. Available from: https://ashpublications.org/blood/article/97/12/3951/107245/Human-cathelicidin-hCAP18-is-processed-to-the

Wong JH, Ng TB, Legowska A, Rolka K, Hui M, Cho CH. Antifungal action of human cathelicidin fragment (LL13–37) on Candida albicans. Peptides. 2011 Oct;32(10):1996–2002.

Dean SN, Bishop BM, van Hoek ML. Susceptibility of Pseudomonas aeruginosa Biofilm to Alpha-Helical Peptides: D-enantiomer of LL-37. Front Microbiol [Internet]. 2011;2. Available from: http://journal.frontiersin.org/article/10.3389/fmicb.2011.00128/abstract

Barlow PG, Svoboda P, Mackellar A, Nash AA, York IA, Pohl J, et al. Antiviral Activity and Increased Host Defense against Influenza Infection Elicited by the Human Cathelicidin LL-37. Kovats S, editor. PLoS One. 2011 Oct;6(10):e25333.

Wong JH, Legowska A, Rolka K, Ng TB, Hui M, Cho CH, et al. Effects of cathelicidin and its fragments on three key enzymes of HIV-1. Peptides. 2011 Jun;32(6):1117–22.

Rico-Mata R, De Leon-Rodriguez LM, Avila EE. Effect of antimicrobial peptides derived from human cathelicidin LL-37 on Entamoeba histolytica trophozoites. Exp Parasitol. 2013 Mar;133(3):300–6.

Davidson DJ, Currie AJ, Reid GSD, Bowdish DME, MacDonald KL, Ma RC, et al. The Cationic Antimicrobial Peptide LL-37 Modulates Dendritic Cell Differentiation and Dendritic Cell-Induced T Cell Polarization. J Immunol. 2004 Jan;172(2):1146–56.

Salvado MD, Di Gennaro A, Lindbom L, Agerberth B, Haeggström JZ. Cathelicidin LL-37 Induces Angiogenesis via PGE 2 –EP3 Signaling in Endothelial Cells, In Vivo Inhibition by Aspirin. Arterioscler Thromb Vasc Biol. 2013 Aug;33(8):1965–72.

Pfosser A, El-Aouni C, Pfisterer I, Dietz M, Globisch F, Stachel G, et al. NF ÎoB Activation in Embryonic Endothelial Progenitor Cells Enhances Neovascularization Via PSGL-1 Mediated Recruitment: Novel Role for LL37. Stem Cells. 2009;N/A-N/A.

Ramos R, Silva JP, Rodrigues AC, Costa R, Guardão L, Schmitt F, et al. Wound healing activity of the human antimicrobial peptide LL37. Peptides. 2011 Jul;32(7):1469–76.

Coffelt SB, Marini FC, Watson K, Zwezdaryk KJ, Dembinski JL, LaMarca HL, et al. The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proc Natl Acad Sci. 2009 Mar;106(10):3806–11.

Kai-Larsen Y. The role of the multifunctional peptide LL-37 in host defense. Front Biosci. 2008;Volume(13):3760.

National Center for Biotechnology Information. PubChem Database. LL-37, Source=IUPHAR/BPS Guide to PHARMACOLOGY, SID=178102170. 2020.

Porcelli F, Verardi R, Shi L, Henzler-Wildman KA, Ramamoorthy A, Veglia G. NMR Structure of the Cathelicidin-Derived Human Antimicrobial Peptide LL-37 in Dodecylphosphocholine Micelles †. Biochemistry. 2008 May;47(20):5565–72.

Guangshun W. Structures of Human Host Defense Cathelicidin LL-37 and Its Smallest Antimicrobial Peptide KR-12 in Lipid Micelles. J Biol Chem. 2008 Nov;283(47):32637–43.

Wang G. Human Antimicrobial Peptides and Proteins. Pharmaceuticals [Internet]. 2014 May 13;7(5):545–94. Available from: http://www.mdpi.com/1424-8247/7/5/545

Burton MF, Steel PG. The chemistry and biology of LL-37. Nat Prod Rep. 2009;26(12):1572.

Grönberg A, Dieterich C, Mahlapuu M. U.S. Patent No. 10,226,508. Washington, DC; 2019.

Öhnstedt E, Lofton Tomenius H, Vågesjö E, Phillipson M. The discovery and development of topical medicines for wound healing. Expert Opin Drug Discov. 2019 May;14(5):485–97.

Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock REW. The Human Antimicrobial Peptide LL-37 Is a Multifunctional Modulator of Innate Immune Responses. J Immunol. 2002 Oct;169(7):3883–91.

Tokumaru S, Sayama K, Shirakata Y, Komatsuzawa H, Ouhara K, Hanakawa Y, et al. Induction of Keratinocyte Migration via Transactivation of the Epidermal Growth Factor Receptor by the Antimicrobial Peptide LL-37. J Immunol. 2005 Oct;175(7):4662–8.

Koczulla R, von Degenfeld G, Kupatt C, Krötz F, Zahler S, Gloe T, et al. An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest. 2003 Jun;111(11):1665–72.

Ron-Doitch S, Sawodny B, Kühbacher A, David MMN, Samanta A, Phopase J, et al. Reduced cytotoxicity and enhanced bioactivity of cationic antimicrobial peptides liposomes in cell cultures and 3D epidermis model against HSV. J Control Release [Internet]. 2016 May;229:163–71. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0168365916301596

Angelova A, Garamus VM, Angelov B, Tian Z, Li Y, Zou A. Advances in structural design of lipid-based nanoparticle carriers for delivery of macromolecular drugs, phytochemicals and anti-tumor agents. Adv Colloid Interface Sci. 2017 Nov;249:331–45.

Matougui N, Boge L, Groo A-C, Umerska A, Ringstad L, Bysell H, et al. Lipid-based nanoformulations for peptide delivery. Int J Pharm. 2016 Apr;502(1–2):80–97.

Fumakia M, Ho EA. Nanoparticles Encapsulated with LL37 and Serpin A1 Promotes Wound Healing and Synergistically Enhances Antibacterial Activity. Mol Pharm [Internet]. 2016 Jul 5;13(7):2318–31. Available from: https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.6b00099

Boge L, Hallstensson K, Ringstad L, Johansson J, Andersson T, Davoudi M, et al. Cubosomes for topical delivery of the antimicrobial peptide LL-37. Eur J Pharm Biopharm. 2019 Jan;134:60–7.

Bangham AD, Standish MM, Weissmann G. The action of steroids and streptolysin S on the permeability of phospholipid structures to cations. J Mol Biol. 1965 Aug;13(1):253-IN28.

Gregoriadis G, Florence AT. Liposomes in Drug Delivery. Drugs. 1993 Jan;45(1):15–28.

Kraft JC, Freeling JP, Wang Z, Ho RJY. Emerging Research and Clinical Development Trends of Liposome and Lipid Nanoparticle Drug Delivery Systems. J Pharm Sci. 2014 Jan;103(1):29–52.

Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett [Internet]. 2013 Dec 22;8(1):102. Available from: https://nanoscalereslett.springeropen.com/articles/10.1186/1556-276X-8-102

Gregoriadis G, Perrie Y. Liposomes. In Encyclopedia of Life Sciences (ELS). Chichester: John Wiley & Sons, Ltd; 2010.

Laouini A, Jaafar-Maalej C, Limayem-Blouza I, Sfar S, Charcosset C, Fessi H. Preparation, Characterization and Applications of Liposomes: State of the Art. J Colloid Sci Biotechnol [Internet]. 2012 Dec 1;1(2):147–68. Available from: http://www.ingentaconnect.com/content/10.1166/jcsb.2012.1020

Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine [Internet]. 2015 Feb;10(1):975. Available from: http://www.dovepress.com/liposomes-as-nanomedical-devices-peer-reviewed-article-IJN

Shashi, K., Satinder, K., & Bharat P. A complete review on: Liposomes. Int Res J Pharm. 2012;3(7):10–6.

Patil YP, Jadhav S. Novel methods for liposome preparation. Chem Phys Lipids. 2014 Jan;177:8–18.

Khadke S, Stone P, Rozhin A, Kroonen J, Perrie Y. Point of use production of liposomal solubilised products. Int J Pharm. 2018 Feb;537(1–2):1–8.

Goñi FM. The basic structure and dynamics of cell membranes: An update of the Singer–Nicolson model. Biochim Biophys Acta - Biomembr [Internet]. 2014 Jun;1838(6):1467–76. Available from: https://linkinghub.elsevier.com/retrieve/pii/S000527361400008X

Lila ASA, Ishida T. Liposomal Delivery Systems: Design Optimization and Current Applications. Biol Pharm Bull [Internet]. 2017;40(1):1–10. Available from: https://www.jstage.jst.go.jp/article/bpb/40/1/40_b16-00624/_article

Pattni BS, Chupin V V., Torchilin VP. New Developments in Liposomal Drug Delivery. Chem Rev [Internet]. 2015 Oct 14;115(19):10938–66. Available from: https://pubs.acs.org/doi/10.1021/acs.chemrev.5b00046

Refbacks

  • Saat ini tidak ada refbacks.