Pengaruh Proses Fermentasi pada Daun Centella asiatica oleh Acetobacter tropicalis Terhadap Aktivitas Trombolitik

Lailatul Nuraini, Bambang Tri Purwanto, Achmad Syahrani, Riesta Primaharinastiti, Achmad Toto Poernomo

Abstrak

Agen trombolitik merupakan plasminogen activator yang dapat memecah fibrin menjadi fibrin degradation product (FDP) dan dapat digunakan pada terapi penyakit kardiovaskular. Agen trombolitik dapat diperoleh dari mikroorganisme seperti Acetobacter tropicalis InaCC B374 dan dari tanaman seperti Centella asiatica. Kedua sumber agen trombolitik tersebut dapat dilakukan kombinasi melalui proses fermentasi untuk meningkatkan efek terapetiknya. Proses fermentasi sendiri dipengaruhi oleh beberapa faktor termasuk media fermentasi dan waktu fermentasi. Penelitian ini bertujuan untuk mengetahui pengaruh proses fermentasi terhadap peningkatan aktivitas trombolitik dari hasil fermentasi Centella asiatica oleh Acetobacter tropicalis InaCC B374 pada berbagai variasi waktu fermentasi. Preparasi dilakukan dengan memfermentasi Centella asiatica selama 24, 48, dan 72 jam pada suhu 30°±1°C dengan kecepatan pengocokan 100 rpm kemudian ditentukan aktivitas trombolitiknya dengan metode clot lysis yang dilakukan inkubasi pada suhu 37°±1°C selama 60 menit. Hasil pengujian aktivitas trombolitik menunjukkan bahwa terjadi peningkatan aktivitas trombolitik setelah dilakukan proses fermentasi selama 24, 48 dan 72 jam dan aktivitas trombolitik maksimum tercapai pada hasil fermentasi 72 jam. Centella asiatica yang difermentasi selama 72 jam menunjukkan nilai indeks trombolitik yang paling besar (82,03) jika dibandingkan dengan infusa Centella asiatica tanpa fermentasi (37,39) dan Acetobacter tropicalis InaCC B374 (37,68). Disimpulkan bahwa proses fermentasi Centella asiatica oleh Acetobacter tropicalis InaCC B374 secara signifikan dapat meningkatkan aktivitas trombolitik keduanya

Kata Kunci

Acetobacter tropicalis; aktivitas trombolitik; Centella asiatica;clot lysis;fermentasi

Teks Lengkap:

PDF

Referensi

Collen D, Lijnen HR. Thrombolytic agents. Thromb Haemost. 2005;93(4):627–30.

Akhtar T, Hoq MM, Mazid MA. Bacterial proteases as thrombolytics and fibrinolytics. Dhaka Univ J Pharm Sci. 2017;16(2):255–69.

Stephani L, Tjandrawinata RR, Afifah DN, Lim Y, Ismaya WT, Suhartono MT, et al. Food Origin Fibrinolytic Enzyme With Multiple Actions. Hayati J Biosci. 2017;24(3):124–30.

Kotb E. Activity assessment of microbial fibrinolytic enzymes. Appl Microbiol Biotechnol. 2013;97(15):6647–65.

Afifah DN, Sulchan M, Syah D, Yanti, Suhartono MT, Kim JH. Purification and Characterization of a Fibrinolytic Enzyme from Bacillus pumilus 2.g Isolated from Gembus, an Indonesian Fermented Food. Prev Nutr Food Sci. 2014;19(3):213–9.

Raju EVN, Divakar G. An Overview on microbial fibrinolytic proteases. Int J Pharm Sci Res. 2014;5(3):643–56.

Kotb E. Fibrinolytic Bacterial Enzymes with Thrombolytic Activity. SpringerBriefs in Microbiology. 2012. 1–69 p.

Newell P, Chaston J, Wang Y, Winans N, Sannino D, Wong A, et al. In vivo function and comparative genomic analyses of the Drosophila gut microbiota identify candidate symbiosis factors. Front Microbiol. 2014;5:1–15.

Park J, Yoon S, Kim S, Lee B, Cheong H. Characterization and fibrinolytic activity of Acetobacter sp. FP1 isolated from fermented pine needle extract. J Microbiol Biotechnol. 2012;22(2):215–9.

Bajaj BK, Singh S, Khullar M, Singh K, Bhardwaj S. Optimization of fibrinolytic protease production from Bacillus subtilis I-2 using agro-residues. Brazilian Arch Biol Technol. 2014;57(5):653–62.

Zahara K. Clinical and therapeutic benefits of Centella asiatica. Pure Appl Biol. 2014;3(4):152–9

Rishikesh, Ghosh DR, Rahman MM. Thrombolytic Activity of Centella asiatica

Leaves. Int J Pharm. 2013;3(2):308–11.

Forte R, Cennamo G, Finelli ML, Bonavolonta P, Crecchio G De, Greco GM.

Combination of Flavonoids with Centella asiatica and Melilotus for Diabetic Cystoid Macular Edema Without Macular Thickening. J Ocul Pharmacol Ther. 2011;27(2):109–13.

Evangelista JH, Vera MJ De, Garcia RS, Joven MG, Solidum JN. Preliminary

Assessment of In vitro Anticoagulant Activity vs. Heparin 1,000I.U. and Cytotoxicity of Selected Philippine Medicinal Plants. Int J Chem Environ Eng Prelim. 2012;3(6):372–6.

Singh R. Microbial Biotransformation: A Process for Chemical Alterations. J

Bacteriol Mycol. 2017;4(2):47–51.

Hussain A, Bose S, Wang JH, Yadav MK, Mahajan GB, Kim H. Fermentation, a feasible strategy for enhancing bioactivity of herbal medicines. Food Res Int. 2016;81:1–16.

Hussain A, Bose S, Wang JH, Yadav MK, Mahajan GB, Kim H. Fermentation, a

feasible strategy for enhancing bioactivity of herbal medicines. Food Res Int.

;81:1–16.

Mertz C, Ranovona Z, Dhuique-Mayer C, Servent A, Dornier M, Danthu P, et al.

The nutrient content of two folia morphotypes of Centella asiatica (L) grown in

Madagascar. African J Food Agric Nutr Dev. 2019;19(3):14654–73.

Adamczyk B, Smolander A, Kitunen V, Godlewski M. Proteins as nitrogen source

for plants: A short story about exudation of proteases by plant roots. Plant Signal

Behav. 2010;5(7):817–9.

Leyn SA, Maezato Y, Romine MF, Rodionov DA. Genomic reconstruction of

carbohydrate utilization capacities in microbial-mat derived consortia. Front

Microbiol. 2017;8:1–17.

Rohmah MK, Fickri DZ, Kasifa W, Wahyuni KI. Uji Aktivitas Fibrinolisis Infusa

Alkaloid Total Rimpang Lengkuas Merah (Alpinia purpurata (Vielli) K.Schum)

Secara In Vitro. J Pharm Care Anwar Med. 2019;2(1):1–11.

Salamah A, Srihardyastutie A, Prasetyawan S, Safitri A. Influence of mixed

cultures of Saccharomyces cerevisiae and Acetobacter aceti for hydrolysis of

tannins in the cabbage fermentation (Brassica oleracea L.var.capitata). IOP Conf

Ser Mater Sci Eng. 2019;546(6):1–7.

Borhan MZ, Ahmad R, Rusop M, Abdullah S. Green Extraction: Enhanced

Extraction Yield of Asiatic Acid from Centellaasiatica (L.) Nanopowders . J Appl

Chem. 2013;2013:1–7.

Madhusudhan NC, Neeraja P, Devi P. Comparative analysis of active

constituents in Centella asiatica varieties (Majjaposhak and Subhodak). Int J

Pharm Phytopharm Res. 2014;4(2):105–8.

Rosada KK. Enhanced acetic acid production from manalagi apple (Malus

sylvestris mill) by mixed cultures of Saccharomyces cerevisiae and Acetobacter

aceti in submerged fermentation. J Phys Conf Ser. 2018;1013(1):1–7.

Poernomo AT, Isnaeni, Purwanto. Aktivitas Invitro Enzim Fibrinolitik Infusa Tempe

Hasil Fermentasi Rhizopus oligosporus ATCC 6010 Pada Substrat Kedelai Hitam.

Berk Ilm Kim Farm. 2014;4(2):18–24.

Ashipala OK, He Q. Optimization of fibrinolytic enzyme production by Bacillus

subtilis DC-2 in aqueous two-phase system (poly-ethylene glycol 4000 and

sodium sulfate). Bioresour Technol. 2008;99(10):4112–9.

Prasad S, Kashyap RS, Deopujari JY, Purohit HJ, Taori GM, Daginawala HF.

Development of an in vitro model to study clot lysis activity of thrombolytic drugs.

Thromb J. 2006;4(14):9–12.

Ratnasooriya WD, Fernando TSP, Madubashini PP. In vitro thrombolytic activity

of Sri Lankan black tea, Camellia sinensis (L.) O. Kuntze. J Natl Sci Found Sri

Lanka. 2008;36(2):179–81.

Wang B, Pu Y, Gerken HG, Xie Y, Lin L, Chen H, et al. Production of D-Glyceric

Acid by a Two-step Culture Strategy Based on Whole-cell Biocatalysis of

Acetobacter tropicalis. Chem Biochem Eng Q. 2018;32(1):135–40.

Feng R, Chen L, Chen K. Fermentation trip : amazing microbes , amazing

metabolisms. Ann Microbiol. 2018;68:717–29.

Giraffa G. Studying the dynamics of microbial populations during food

fermentation. FEMS Microbiol Rev. 2004;28:251–60.

Refbacks