Kajian Pengembangan Sediaan Nanosuspensi Untuk Penghantaran Intravena Obat Sukar Larut Air
Abstrak
Pengembangan bentuk sediaan perlu dilakukan untuk penghantaran intravena senyawa aktif dengan kelarutan yang rendah dalam air. Nanosuspensi sebagai suatu produk nanoteknologi banyak diaplikasikan untuk tujuan tersebut. Penelitian ini bertujuan untuk mengkaji pengembangan sistem nanosuspensi untuk penghantaran intravena obat sukar larut air dalam hal jenis penstabil yang aman digunakan dan mengkaji pengaruhnya terhadap disolusi, pelepasan , dan profil farmakokinetika zat aktif serta kajian keamanan penggunaan. Penelitian dilakukan dengan systematic literature review (SLR), menggunakan artikel ilmiah dari database bereputasi yang memenuhi kriteria inklusi dan eksklusi yang sudah ditetapkan. Hasil kajian menunjukkan bahan penstabil utama yang digunakan pada pengembangan nanosuspensi intravena adalah poloxamer, lesitin, TPGS (D-a-tocopheryl polyethylene glycol 1000 succinate), dan BSA (bovine serum albumin) yang bersifat biokompatibel, non toksik, dengan harus memperhatikan kadar maksimal menurut FDA’s Inactive Ingredient Database for IV route. Pengembangan nanosuspensi secara signifikan mampu meningkatkan disolusi dan pelepasan zat aktif dibandingkan dengan bentuk murni/suspensi. Pengembangan nanosuspensi pada beberapa bahan aktif mampu merubah profil farmakokinetika yang ditandai dengan peningkatan nilai AUC (area under curve), Cmax, dan MRT (mean residence time) dengan memberikan profil pelepasan diperlambat (sustained release). Pengembangan nanosuspensi pada beberapa bahan aktif terbukti aman digunakan secara intravena berdasarkan uji hemolisis dan iritasi vaskular. Berdasarkan kajian yang telah dilakukan diketahui bahwa nanosuspensi sesuai dan potensial untuk diaplikasikan untuk penghantaran intravena obat sukar larut air.
Kata Kunci
Teks Lengkap:
PDFReferensi
Wanigasekara J, Witharana C. Applications of nanotechnology in drug delivery and design - an insight. Curr Trends Biotechnol Pharm. 2016;10(1).
Safari J, Zarnegar Z. Advanced drug delivery systems: Nanotechnology of health design A review. Vol. 18, Journal of Saudi Chemical Society. 2014.
Shinde NC, Keskar NJ, Argade PD. Nanoparticles: Advances in drug delivery systems. Vol. 3, Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2012.
Park K. Nanotechnology: What it can do for drug delivery. Vol. 120, Journal of Controlled Release. 2007.
Mastiholimath VS, Bhagat Ankita R, Mannur VS, Dandagi PM, Gadad AP, Khanal P. Formulation and evaluation of cefixime nanosuspension for the enhancement of oral bioavailability by solvent-antisolvent method and its suitable method development. Indian J Pharm Educ Res. 2020;54(1).
Azimullah S, Vikrant , Sudhakar C, Kumar P, Patil A, Md. Usman MR, et al. Nanosuspensions as a promising approach to enhance bioavailability of poorly soluble drugs : An update. J Drug Deliv Ther. 2019;9(2).
Wang Y, Zheng Y, Zhang L, Wang Q, Zhang D. Stability of nanosuspensions in drug delivery. J Control Release. 2013 Dec 28;172(3):1126–41.
Sattar A, Chen D, Jiang L, Pan Y, Tao Y, Huang L, et al. Preparation, characterization and pharmacokinetics of cyadox nanosuspension. Sci Rep. 2017;7(1).
Jacob S, Nair AB, Shah J. Emerging role of nanosuspensions in drug delivery systems. Vol. 24, Biomaterials Research. 2020.
Haranath C, Hindustan Abdul Ahad Pushpalatha Gutty R, Kalpana K, Sai Priyanka M, Devika P. Nanosuspension as Promising and Potential Drug Delivery: A Review. Int J Pharma Bio Sci. 2021;11(1).
Liu T, Müller RH, Möschwitzer JP. Effect of drug physico-chemical properties on the efficiency of top-down process and characterization of nanosuspension. Vol. 12, Expert Opinion on Drug Delivery. 2015.
Du J, Li X, Zhao H, Zhou Y, Wang L, Tian S, et al. Nanosuspensions of poorly water-soluble drugs prepared by bottom-up technologies. Vol. 495, International Journal of Pharmaceutics. 2015.
Shilpa C, Shrenik K, Ritesh M, Sachin J, Mukesh R. Nanosuspension-A Novel Approaches in Drug Delivery System. Int J Pharma Res Rev. 2013;2(12).
Purkayastha H Das, Hossian Ski. Nanosuspension: A Modern Technology Used In Drug Delivery System. Int J Curr Pharm Res. 2019;
Jin Jf, Zhu Ll, Chen M, Xu Hm, Wang Hf, Feng Xq, Et Al. The Optimal Choice Of Medication administration route regarding intravenous, intramuscular, and subcutaneous injection. Vol. 9, Patient Preference and Adherence. 2015.
Pu X, Sun J, Li M, He Z. Formulation of Nanosuspensions as a New Approach for the Delivery of Poorly Soluble Drugs. Curr Nanosci. 2012;5(4).
Yuan Q, Wang Y, Song R, Hou X, Yu K, Zheng J, et al. Study on formulation, in vivoexposure, and passive targeting of intravenous itraconazole nanosuspensions. Front Pharmacol. 2019;10(MAR).
Priani SE, Setianty TN, Aryani R, Fitrianingsih SP, Syafnir L. Development of Nanocapsules Containing Cytotoxic Agents- A Review. J Farm Galen (Galenika J Pharmacy). 2021;7(2).
Hardianti M, Yuniarto A, Hasimun P. Review: Zebrafish (Danio Rerio) Sebagai Model Obesitas dan Diabetes Melitus Tipe 2. J Sains Farm Klin. 2021;8(2).
Arora D, Khurana B, Rath G, Nanda S, Goyal AK. Recent Advances in Nanosuspension Technology for Drug Delivery. Curr Pharm Des. 2018;24(21).
Shen G, Wang Q, Zhang Q, Sun H, Zhao Y, Zhang Z, et al. Tissue distribution of 2-methoxyestradiol nanosuspension in rats and its antitumor activity in C57BL/6 mice bearing lewis lung carcinoma. Drug Deliv. 2012;19(7).
Danhier F, Ucakar B, Vanderhaegen ML, Brewster ME, Arien T, Préat V. Nanosuspension for the delivery of a poorly soluble anti-cancer kinase inhibitor. Eur J Pharm Biopharm. 2014;
Hou CD, Wang JX, Le Y, Zou HK, Zhao H. Preparation of azithromycin nanosuspensions by reactive precipitation method. Drug Dev Ind Pharm. 2012;38(7).
Gao Y, Li Z, Sun M, Guo C, Yu A, Xi Y, et al. Preparation and characterization of intravenously injectable curcumin nanosuspension. Drug Deliv. 2011;18(2).
Liu Y, Zhang D, Duan C, Jia L, Xie P, Zheng D, et al. Studies on pharmacokinetics and tissue distribution of bifendate nanosuspensions for intravenous delivery. J Microencapsul. 2012;29(2).
Wang L, Li M, Zhang N. Folate-targeted docetaxel-lipid-based-nanosuspensions for active-targeted cancer therapy. Int J Nanomedicine. 2012;7.
Talekar M, Kendall J, Denny W, Jamieson S, Garg S. Development and evaluation of PIK75 nanosuspension, a phosphatidylinositol- 3-kinase inhibitor. Eur J Pharm Sci. 2012;47(5).
Talekar M, Ganta S, Amiji M, Jamieson S, Kendall J, Denny WA, et al. Development of PIK-75 nanosuspension formulation with enhanced delivery efficiency and cytotoxicity for targeted anti-cancer therapy. Int J Pharm. 2013;450(1–2).
Tian X, Li H, Zhang D, Liu G, Jia L, Zheng D, et al. Nanosuspension for parenteral delivery of a p-terphenyl derivative: Preparation, characteristics and pharmacokinetic studies. Colloids Surfaces B Biointerfaces. 2013;108.
Yang S, Zhang B, Gong X, Wang T, Liu Y, Zhang N. In vivo biodistribution, biocompatibility, and efficacy of sorafenib-loaded lipid-based nanosuspensions evaluated experimentally in cancer. Int J Nanomedicine. 2016;11.
Li Y, Hong J, Li H, Qi X, Guo Y, Han M, et al. Genkwanin nanosuspensions: A novel and potential antitumor drug in breast carcinoma therapy. Drug Deliv. 2017;24(1).
Ao H, Li Y, Li H, Wang Y, Han M, Guo Y, et al. Preparation of hydroxy genkwanin nanosuspensions and their enhanced antitumor efficacy against breast cancer. Drug Deliv. 2020;27(1).
Gao L, Liu G, Kang J, Niu M, Wang Z, Wang H, et al. Paclitaxel nanosuspensions coated with P-gp inhibitory surfactants: I. Acute toxicity and pharmacokinetics studies. Colloids Surfaces B Biointerfaces. 2013;111.
Wang Z, Li Z, Zhang D, Miao L, Huang G. Development of etoposide-loaded bovine serum albumin nanosuspensions for parenteral delivery. Drug Deliv. 2015;22(1).
Han M, Liu X, Guo Y, Wang Y, Wang X. Preparation, characterization, biodistribution and antitumor efficacy of hydroxycamptothecin nanosuspensions. Int J Pharm. 2013;455(1–2).
Goel S, Sachdeva M, Agarwal V. Nanosuspension Technology: Recent Patents on Drug Delivery and their Characterizations. Recent Pat Drug Deliv Formul. 2019;13(2).
Fujimura H, Komasaka T, Tomari T, Kitano Y, Takekawa K. Nanosuspension formulations of poorly water-soluble compounds for intravenous administration in exploratory toxicity studies: in vitro and in vivo evaluation. J Appl Toxicol. 2016;36(10).
Guler N, Abro S, Emanuele M, Iqbal O, Hoppensteadt D, Fareed J. Functional Protection of Platelets By Tri-Block Polymer (Poloxamer-188 ) As Studied in Agonist Induced Platelet Aggregation Systems. Blood. 2015;126(23).
Giuliano E, Paolino D, Fresta M, Cosco D. Mucosal applications of poloxamer 407-based hydrogels: An overview. Vol. 10, Pharmaceutics. 2018.
Jain D, Athawale R, Bajaj A, Shrikhande S, Goel PN, Gude RP. Studies on stabilization mechanism and stealth effect of poloxamer 188 onto PLGA nanoparticles. Colloids Surfaces B Biointerfaces. 2013;109.
Wang Y, Li X, Wang L, Xu Y, Cheng X, Wei P. Formulation and pharmacokinetic evaluation of a paclitaxel nanosuspension for intravenous delivery. Int J Nanomedicine. 2011;6.
Patel D, Zode SS, Bansal AK. Formulation aspects of intravenous nanosuspensions. Vol. 586, International Journal of Pharmaceutics. 2020.
Agrawal Y, Patel V. Nanosuspension: An approach to enhance solubility of drugs. J Adv Pharm Technol Res. 2011;
Rajamani S, Sengodan T, Thangavelu S, Shanmukhan NK, Radhakrishnan A. Naringenin-loaded TPGS polymeric nanosuspension: In-vitro and in-vivo anti-inflammatory activity. Indones J Pharm. 2019;30(3).
Bhargav E, Chaithanya Barghav G, Padmanabha Reddy Y, Pavan kumar C, Ramalingam P, Haranath C. A Design of Experiment (DoE) based approach for development and optimization of nanosuspensions of telmisartan, a BCS class II antihypertensive drug. Futur J Pharm Sci. 2020;6(1).
Scheff JD, Almon RR, Dubois DC, Jusko WJ, Androulakis IP. Assessment of pharmacologic area under the curve when baselines are variable. Pharm Res. 2011;28(5).
Ďuršiová M. Physiologically based structure of mean residence time. Sci World J. 2012;2012.
Sajeev Kumar B, Saraswathi R, Venkates Kumar K, Jha SK, Venkates DP, Dhanaraj SA. Development and characterization of lecithin stabilized glibenclamide nanocrystals for enhanced solubility and drug delivery. Drug Deliv. 2014;21(3).
Kim HJ, Yoo SM, Son HS, Ahn CB, Shin YS, Chung JH, et al. Evaluation of the Performance and Safety of a Newly Developed Intravenous Fluid Warmer. Artif Organs. 2015;39(7).
Gao Y, Li Z, Sun M, Li H, Guo C, Cui J, et al. Preparation, characterization, pharmacokinetics, and tissue distribution of curcumin nanosuspension with TPGS as stabilizer. Drug Dev Ind Pharm. 2010;36(10).
Refbacks
- Saat ini tidak ada refbacks.