Peningkatan Disolusi dan Stabilitas Efavirenz Menggunakan Beberapa Metode Dispersi Padat
Abstrak
Efavirenz merupakan obat terapi AIDS yang memiliki beberapa bentuk polimorf. Beberapa bentuk polimorf akan memiliki perbedaan dalam disolusi dan stabiltasnya. Dispersi padat merupakan dispersi bahan aktif farmasi kedalam pembawa yang hidrofilik, yang bertujuan untuk meningkatkan disolusi dan stabilitasnya. Beberapa metode dispersi padat efavirenz pada penelitian sebelumnya yang berpotensi dalam meningkatkan kelarutan, disolusi, dan stabilitas efavirenz diantaranya hot melt extrusion, penguapan pelarut, pengeringan semprot, pengeringan beku, dan pengadukan (kneading). Diantara kelima metode dispersi padat yang dapat dirujuk diantara metode lainnya dalam meningkatkan kelarutan, disolusi, dan stabilitas adalah hot melt extrusion karena telah dilakukan uji kelarutan dan disolusi dengan peningkatan kelarutan rentang hingga 5,45 kali dan peningkatan disolusi hingga 9 kali dibandingkan efavirenz murni, serta pengujian stabilitas tetap stabil setelah dilakukan selama 1-6 bulan. Namun metode lainnya terkecuali penguapan pelarut (karena tidak meningkatkan profil disolusi meskipun stabil dalam penyimpanan 1 bulan), seperti pengeringan semprot, pengeringan beku, dan pengadukan (kneading) dapat dijadikan rujukan untuk pengembangan dispersi padat untuk meningkatkan kelarutan, disolusi, dan stabilitas efavirenz. Peningkatan stabilitas setelah penyimpanan salah satunya ditandai dengan stabil dalam bentuk amorf, stabil atau serupa dalam kelarutan, profil pelepasan dan kandungannya. Perbaikan stabilitas penyimpanan dispersi padat perlu disesuaikan antara parameter metode dispersi padat (terutama suhu dan perilaku mekanis) dengan sifat pembawa dan atau eksipien lain yang akan digunakan (seperti pelarut, plastizer dsb.).
Kata Kunci
Teks Lengkap:
PDFReferensi
. Noyes AA, Whitney WR. The rate of solution of solid substances in their own solutions. J Am Chem Soc. 1897;19(12):930–4.
. Dokoumetzidis A, Macheras P. A century of dissolution research: From Noyes and Whitney to the Biopharmaceutics Classification System. Int J Pharm. 2006;321(1–2):1–11.
. Jangid AK, Pooja D, Kulhari H. Determination of solubility, stability and degradation kinetics of morin hydrate in physiological solutions. RSC Adv. 2018;8(50):28836–42.
. Iyer R, Jovanovska VP, Berginc K, Jaklič M, Fabiani F, Harlacher C, et al. Amorphous solid dispersions (ASDs): The influence of material properties, manufacturing processes and analytical technologies in drug product development. Pharmaceutics. 2021;13(10).
. Thongnopkoon T, Puttipipatkhachorn S. New metastable form of glibenclamide prepared by redispersion from ternary solid dispersions containing polyvinylpyrrolidone-K30 and sodium lauryl sulfate. Drug Dev Ind Pharm [Internet]. 2016;42(1):70–9. Available from: http://dx.doi.org/10.3109/03639045.2015.1029938
. Wardhana YW, Soewandhi SN, Wikarsa S, Suendo V. Observation Of Polymorphic Transformation Of Amorphous Efavirenz During Heating And Grinding Processes Using Raman Spectroscopy . Res J Pharm Biol Chem Sci [Internet]. 2017;280–6. Available from: https://www.researchgate.net/profile/Yoga_Wardhana/publication/314646364_Observation_Of_Polymorphic_Transformation_Of_Amorphous_Efavirenz_During_Heating_And_Grinding_Processes_Using_Raman_Spectroscopy/links/58c4058ea6fdcce648e4dbd3/Observation-Of-Polymorp
. Fandaruff C, Rauber GS, Araya-Sibaja AM, Pereira RN, De Campos CEM, Rocha HVA, et al. Polymorphism of anti-HIV drug efavirenz: Investigations on thermodynamic and dissolution properties. Cryst Growth Des. 2014;14(10):4968–75.
. Wardhana YW, Soewandhi SN, Wikarsa S, Suendo V. Polymorphic properties and dissolution profile of efavirenz due to solvents recrystallization. Pak J Pharm Sci. 2019;32(3):981–6.
. Wardhana YW, Hardian A, Chaerunisa AY, Suendo V, Soewandhi SN. Kinetic estimation of solid state transition during isothermal and grinding processes among efavirenz polymorphs. Heliyon [Internet]. 2020;6(5):e03876. Available from: https://doi.org/10.1016/j.heliyon.2020.e03876
. Duwal S, Seeler D, Dickinson L, Khoo S, Von Kleist M. The utility of efavirenz-based prophylaxis against HIV infection. A systems pharmacological analysis. Front Pharmacol. 2019;10(MAR).
. Pokharkar V, Patil-Gadhe A, Palla P. Efavirenz loaded nanostructured lipid carrier engineered for brain targeting through intranasal route: In-vivo pharmacokinetic and toxicity study. Biomed Pharmacother [Internet]. 2017;94:150–64. Available from: http://dx.doi.org/10.1016/j.biopha.2017.07.067
. Jakubowska E, Lulek J. The application of freeze-drying as a production method of drug nanocrystals and solid dispersions – A review. J Drug Deliv Sci Technol. 2021;62(August 2020).
. Sarabu S, Kallakunta VR, Bandari S, Batra A, Bi V, Durig T, et al. Hypromellose acetate succinate based amorphous solid dispersions via hot melt extrusion: Effect of drug physicochemical properties. Carbohydr Polym [Internet]. 2020;233(January):115828. Available from: https://doi.org/10.1016/j.carbpol.2020.115828
. Shadambikar G, Kipping T, Di-Gallo N, Elia AG, Knüttel AN, Treffer D, et al. Vacuum compression molding as a screening tool to investigate carrier suitability for hot-melt extrusion formulations. Pharmaceutics. 2020;12(11):1–17.
. Tran P, Pyo YC, Kim DH, Lee SE, Kim JK, Park JS. Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs. Pharmaceutics. 2019;11(3):1–26.
. Nowak M, Gajda M, Baranowski P, Szymczyk P, Karolewicz B, Nartowski KP. Stabilisation and growth of metastable form II of fluconazole in amorphous solid dispersions. Pharmaceutics. 2020;12(1):1–18.
. Van Duong T, Lüdeker D, Van Bockstal PJ, De Beer T, Van Humbeeck J, Van Den Mooter G. Polymorphism of Indomethacin in Semicrystalline Dispersions: Formation, Transformation, and Segregation. Mol Pharm. 2018;15(3):1037–51.
. Tres F, Patient JD, Williams PM, Treacher K, Booth J, Hughes LP, et al. Monitoring the dissolution mechanisms of amorphous bicalutamide solid dispersions via real-time Raman mapping. Mol Pharm. 2015;12(5):1512–22.
. Durga Anumolu P, Yeradesi V, Gurrala S, Puvvadi S, CVS S. efavirenz and its formulations Academic Sciences Asian Journal of Pharmaceutical and Clinical Research. Asian J Pharm Clin Res [Internet]. 2012;5, Suppl 3(March 2014):220–3. Available from: https://www.researchgate.net/publication/261107749%0ADevelopment
. Cristofoletti R, Nair A, Abrahamsson B, Griit DW, Kopp S, Langguth P, et al. Biowaiver Monographs for Immediate Release Solid Oral Dosage Forms: Efavirenz. J Pharm Sci. 2013;102, No. 2(7):318–29.
. Moura Ramos JJ, Piedade MFM, Diogo HP, Viciosa MT. Thermal Behavior and Slow Relaxation Dynamics in Amorphous Efavirenz: A Study by DSC, XRPD, TSDC, and DRS. J Pharm Sci. 2019;108(3):1254–63.
. Zaini E, Wahyu D, Octavia MD, Fitriani L. Influence of milling process on efavirenz solubility. J Pharm Bioallied Sci. 2017;9(1):22–5.
. Mazumder S, Dewangan AK, Pavurala N. Enhanced dissolution of poorly soluble antiviral drugs from nanoparticles of cellulose acetate based solid dispersion matrices. Asian J Pharm Sci [Internet]. 2017;12(6):532–41. Available from: http://dx.doi.org/10.1016/j.ajps.2017.07.002
. Meer T, Fule R, Khanna D, Amin P. Solubility modulation of bicalutamide using porous silica. J Pharm Investig. 2013;43(4):279–85.
. Pawar J, Tayade A, Gangurde A, Moravkar K, Amin P. Solubility and dissolution enhancement of efavirenz hot melt extruded amorphous solid dispersions using combination of polymeric blends: A QbD approach. Eur J Pharm Sci [Internet]. 2016;88:37–49. Available from: http://dx.doi.org/10.1016/j.ejps.2016.04.001
. Koh P, Chuah J, Talekar M, Gorajana A, Garg S. Formulation development and dissolution rate enhancement of efavirenz by solid dispersion systems. Indian J Pharm Sci. 2013;75(3):291–301.
. Asgreen C, Knopp MM, Skytte J, Löbmann K. Influence of the polymer glass transition temperature and molecular weight on drug amorphization kinetics using ball milling. Pharmaceutics. 2020;12(6).
. Wolbert F, Fahrig IK, Gottschalk T, Luebbert C, Thommes M, Sadowski G. Factors Influencing the Crystallization-Onset Time of Metastable ASDs. Pharmaceutics. 2022;14(2):1–13.
. Browne E, Worku ZA, Healy AM. Physicochemical properties of poly-vinyl polymers and their influence on ketoprofen amorphous solid dispersion performance: A polymer selection case study. Pharmaceutics. 2020;12(5).
. Lehmkemper K, Kyeremateng SO, Heinzerling O, Degenhardt M, Sadowski G. Long-Term Physical Stability of PVP- and PVPVA-Amorphous Solid Dispersions. Mol Pharm. 2017;14(1):157–71.
. Mehta M, Kothari K, Ragoonanan V, Suryanarayanan R. Effect of Water on Molecular Mobility and Physical Stability of Amorphous Pharmaceuticals. Mol Pharm. 2016;13(4):1339–46.
. Jha DK, Shah DS, Amin PD. Effect of Hypromellose Acetate Succinate Substituents on Miscibility Behavior of Spray-dried Amorphous Solid Dispersions: Flory–Huggins Parameter Prediction and Validation. Carbohydr Polym Technol Appl [Internet]. 2021;2:100137. Available from: https://doi.org/10.1016/j.carpta.2021.100137
. Ambrogi V, Perioli L, Pagano C, Marmottini F, Ricci M, Sagnella A, et al. Use of SBA-15 for furosemide oral delivery enhancement. Eur J Pharm Sci. 2012;46(1–2):43–8.
. Paudel A, Worku ZA, Meeus J, Guns S, Van Den Mooter G. Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: Formulation and process considerations. Int J Pharm [Internet]. 2013;453(1):253–84. Available from: http://dx.doi.org/10.1016/j.ijpharm.2012.07.015
. Alves LDS, De La Roca Soares MF, De Albuquerque CT, Da Silva ÉR, Vieira ACC, Fontes DAF, et al. Solid dispersion of efavirenz in PVP K-30 by conventional solvent and kneading methods. Carbohydr Polym [Internet]. 2014;104(1):166–74. Available from: http://dx.doi.org/10.1016/j.carbpol.2014.01.027
. Vieira ACC, Ferreira Fontes DA, Chaves LL, Alves LDS, De Freitas Neto JL, De La Roca Soares MF, et al. Multicomponent systems with cyclodextrins and hydrophilic polymers for the delivery of Efavirenz. Carbohydr Polym. 2015;130:133–40.
. Pawar J, Suryawanshi D, Moravkar K, Aware R, Shetty V, Maniruzzaman M, et al. Study the influence of formulation process parameters on solubility and dissolution enhancement of efavirenz solid solutions prepared by hot-melt extrusion: a QbD methodology. Drug Deliv Transl Res. 2018;8(6):1644–57.
. Lavra ZMM, Pereira de Santana D, Ré MI. Solubility and dissolution performances of spray-dried solid dispersion of Efavirenz in Soluplus. Drug Dev Ind Pharm. 2017;43(1):42–54.
. Costa BLA, Sauceau M, Del Confetto S, Sescousse R, Ré MI. Determination of drug-polymer solubility from supersaturated spray-dried amorphous solid dispersions: A case study with Efavirenz and Soluplus®. Eur J Pharm Biopharm. 2019;142(June):300–6.
. Fitriani L, Haqi A, Zaini E. Preparation and characterization of solid dispersion freeze-dried efavirenz - Polyvinylpyrrolidone K-30. J Adv Pharm Technol Res. 2016;7(3):105–9.
. Sathigari SK, Radhakrishnan VK, Davis VA, Parsons DL, Babu RJ. Amorphous-State Characterization of Efavirenz—Polymer Hot-Melt Extrusion Systems for Dissolution Enhancement. J Pharm Sci. 2012;101(9):3456–64.
. Almutairi M, Almutairy B, Sarabu S, Almotairy A, Ashour E, Bandari S, et al. Processability of AquaSolveTM LG polymer by hot-melt extrusion: Effects of pressurized CO2 on physicomechanical properties and API stability. J Drug Deliv Sci Technol. 2019;52(April):165–76.
. Vedha HBN, Yasmin BA, Ramya DD. Solid state modification for the enhancement of solubility of poorly soluble drug: Carrageenan as carrier. Int J Appl Pharm. 2012;4(2):30–5.
. Jelić D. Thermal Stability of Amorphous Solid Dispersions. Molecules. 2021;26(1).
. Schönfeld B, Westedt U, Wagner KG. Vacuum drum drying – A novel solvent-evaporation based technology to manufacture amorphous solid dispersions in comparison to spray drying and hot melt extrusion. Int J Pharm. 2021;596(January).
. Hengsawas Surasarang S, Keen JM, Huang S, Zhang F, McGinity JW, Williams RO. Hot melt extrusion versus spray drying: hot melt extrusion degrades albendazole. Drug Dev Ind Pharm. 2017;43(5):797–811.
. Lehmkemper K, Kyeremateng SO, Heinzerling O, Degenhardt M, Sadowski G. Impact of Polymer Type and Relative Humidity on the Long-Term Physical Stability of Amorphous Solid Dispersions. Mol Pharm. 2017;14(12):4374–86.
. Solanki NG, Lam K, Tahsin M, Gumaste SG, Shah A V., Serajuddin ATM. Effects of Surfactants on Itraconazole-HPMCAS Solid Dispersion Prepared by Hot-Melt Extrusion I: Miscibility and Drug Release. J Pharm Sci [Internet]. 2019;108(4):1453–65. Available from: https://doi.org/10.1016/j.xphs.2018.10.058
. Jørgensen JR, Mohr W, Rischer M, Sauer A, Mistry S, Müllertz A, et al. Stability and intrinsic dissolution of vacuum compression molded amorphous solid dispersions of efavirenz. Int J Pharm. 2023;632(December 2022).
. Dohrn S, Rawal P, Luebbert C, Lehmkemper K, Kyeremateng SO, Degenhardt M, et al. Predicting process design spaces for spray drying amorphous solid dispersions. Int J Pharm X [Internet]. 2021;3(February):100072. Available from: https://doi.org/10.1016/j.ijpx.2021.100072
. Valkama E, Haluska O, Lehto VP, Korhonen O, Pajula K. Production and stability of amorphous solid dispersions produced by a Freeze-drying method from DMSO. Int J Pharm. 2021;606(April).
. Kunz C, Schuldt-Lieb S, Gieseler H. Freeze-Drying From Organic Cosolvent Systems, Part 1: Thermal Analysis of Cosolvent-Based Placebo Formulations in the Frozen State. J Pharm Sci [Internet]. 2018;107(3):887–96. Available from: https://doi.org/10.1016/j.xphs.2017.11.003
. Chaves LL, Vieira ACC, Ferreira D, Sarmento B, Reis S. Rational and precise development of amorphous polymeric systems with dapsone by response surface methodology. Int J Biol Macromol [Internet]. 2015;81:662–71. Available from: http://dx.doi.org/10.1016/j.ijbiomac.2015.08.009
. Volkova T V., Perlovich GL, Terekhova I V. Enhancement of dissolution behavior of antiarthritic drug leflunomide using solid dispersion methods. Thermochim Acta [Internet]. 2017;656:123–8. Available from: http://dx.doi.org/10.1016/j.tca.2017.09.003
. Chen H, Pui Y, Liu C, Chen Z, Su CC, Hageman M, et al. Moisture-Induced Amorphous Phase Separation of Amorphous Solid Dispersions: Molecular Mechanism, Microstructure, and Its Impact on Dissolution Performance. J Pharm Sci [Internet]. 2018;107(1):317–26. Available from: https://doi.org/10.1016/j.xphs.2017.10.028
Refbacks
- Saat ini tidak ada refbacks.










