Pertimbangan Penggunaan Polimer Responsif perubahan pH dan Suhu pada Formulasi Sediaan Topikal

Cecep Suhandi, Yoga Windhu Wardhana

Abstrak

Berbagai metode dan strategi modifikasi untuk pengembangan sediaan topikal telah banyak diterapkan, diantaranya pemanfaatan polimer pintar atau polimer yang responsif terhadap rangsangan menjadi alternatif solusi yang menjanjikan. Kontrol pelepasan terjadi akibat rangsangan lingkungan, yaitu pH dan suhu yang menjadi faktor utama pada pengahantaran sediaan secara topikal. Tinjauan pustaka ini disusun dengan tujuan untuk mengetahui perkembangan terkini dari berbagai polimer responsif pada perubahan suhu dan pH dalam penghantaran sediaan obat secara topikal. Sebanyak 63 artikel yang diperoleh melalui pencarian pada databasis Scopus, PubMed, dan Google Scholar memenuhi kriteria sebagai literatur dalam menyusun artikel tinjauan pustaka ini. Hasil tinjauan mengindikasikan bahwa berbagai polimer yang dapat mengalami perubahan struktural terhadap perubahan suhu dan pH telah berhasil diaplikasikan dalam penghantaran berbagai sediaan zat aktif secara topikal. Suksesnya tujuan pengendalian ini diperoleh dari pertimbangan pemilihan polimer yang sesuai pada kemampuan transformasi polimer pada perubahan pH dan suhu spesifik dimana kondisi patologis kulit berlangsung.

Kata Kunci

Polimer Responsif Stimulus, pH, Suhu, Kulit, Topikal

Teks Lengkap:

PDF

Referensi

Li, J.; Mooney, D.J. Designing hydrogels for controlled drug delivery. Nat Rev Mater. 2016, 1, 16071.

Qiu, Y.; Park, K. Environment-sensitive hydrogels for drug delivery Adv. Drug. Deliv. Rev. 2001, 53, 321–39

Kost, J.; Langer, R. Responsive polymeric delivery systems Adv. Drug. Deliv. Rev. 2001, 46 125–48

Galaev, I.Y.; Mattiasson, B. ‘Smart’ polymers and what they could do in biotechnology and medicine Trends Biotechnol. 1999, 17 335–40

Kumar, A.; Srivastava, A.; Galaev, I.Y.; Mattiasson, B. Smart polymers: physical forms and bioengineering applications Prog. Polym. Sci. 2007, 32 1205–37

Schmal-johann, B. Thermo- and pH- responsivepolymers in drug delivery Adv. Drug. Deliv. Rev. 2006, 58 1655–70

Wells, C.M.; Harris, M.; Choi, L.; Murali, V.P.; Guerra, F.D.; Jennings, J.A. Stimuli-Responsive Drug Release from Smart Polymers. J Funct Biomater. 2019, 10, 34.

Javadzadeh, Y.; Azharshekoufeh Bahari, L. Therapeutic Nanostructures for Dermal and Transdermal Drug Delivery. In Nano- and Microscale Drug Delivery Systems; Elsevier: Oxford, UK, 2017; pp. 131–146. ISBN 978-0-323-52727-9.

Bos, J.D.; Meinardi, M.M.H.M. The 500 Dalton Rule for the Skin Penetration of Chemical Compounds and Drugs: The 500 Dalton Rule for Skin Penetration of Chemical Compounds and Drugs. Exp. Dermatol. 2000, 9, 165–169.

Hadgraft, J. Skin Deep. Eur. J. Pharm. Biopharm. 2004, 58, 291–299.

Ahmad, U.; Ahmad, Z.; Khan, A.; Akhtar, J.; Singh, S.; Ahmad, F. Strategies in Development and Delivery of Nanotechnology Based Cosmetic Products. Drug Res. 2018, 68, 545–552.

Alkilani, A.; McCrudden, M.T.; Donnelly, R. Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the Stratum Corneum. Pharmaceutics 2015, 7, 438–470.

Ramadon, D.; McCrudden, M.T.C.; Courtenay, A.J.; Donnelly, R.F. Enhancement Strategies for Transdermal Drug Delivery Systems: Current Trends and Applications. Drug Deliv. Transl. Res. 2021.

Barry, B.W. Mode of action of penetration enhancers in human skin. JCR, 1987, 6, 85-97.

Moghadam, S.H.; Saliaj, E.; Wettig, S.D.; Dong, C.; Ivanova, M.V.; Huzil, J.T.; Foldvari, M. Effect of Chemical Permeation Enhancers on Stratum Corneum Barrier Lipid Organizational Structure and Interferon Alpha Permeability. Mol. Pharmaceutics, 2013, 10, 2248–2260.

Dhamecha, D.; Rajendra, V.; Rathi, A.; Ghadlinge, S.; Saifee, M.; Dehghan, M. Physical Approaches to Penetration Enhancement. Int. J. Health Res. 2011, 3, 57–70.

Draelos, Z.K. Cosmetic Dermatology: Products and Procedures; Wiley Blackwell: Oxford, UK, 2016; ISBN 978-1-118-65546-7.

Kovácˇik, A.; Kopecˇná, M.; Vávrová, K. Permeation Enhancers in Transdermal Drug Delivery: Benefits and Limitations. Expert Opin. Drug Deliv. 2020, 17, 145–155.

Scopus—Analyze Search Results. Available online: https://www.scopus.com/term/analyzer.uri?sid=eccbd060cb4b915e1349f6c38e2014b6&origin=resultslist&src=s&s=TITLE-ABS-KEY%28polymer+responsive+stimuli%29&sort=cp-f&sdt=cl&sot=b&sl=41&count=9854&analyzeResults=Analyze+results&cluster=scopubyr%2c%222023%22%2cf&txGid=8eaae18fe576ea237c92180d4a3f900a (accessed on 5 February 2023).

Lambers, H.; Piessens, S.; Bloem, A.; Pronk, H.; Finkel, P. Natural Skin Surface PH Is on Average below 5, Which Is Beneficial for Its Resident Flora. Int. J. Cosmet. Sci. 2006, 28, 359–370.

Rippke, F.; Schreiner, V.; Doering, T.; Maibach, H.I. Stratum Corneum PH in Atopic Dermatitis: Impact on Skin Barrier Function and Colonization with Staphylococcus Aureus. Am. J. Clin. Dermatol. 2004, 5, 217–223.

Danby, S.G.; Cork, M.J. pH in Atopic Dermatitis. In Current Problems in Dermatology; Surber, C., Abels, C., Maibach, H., Eds.; S. Karger AG: Basel, Switzerland, 2018; Volume 54, pp. 95–107. ISBN 978-3-318-06384-4.

Eberlein-König, T.; Schäfer, J.; Huss, B. Skin Surface PH, Stratum Corneum Hydration, Trans-Epidermal Water Loss and Skin Roughness Related to Atopic Eczema and Skin Dryness in a Population of Primary School Children: Clinical Report. Acta Derm. Venereol. 2000, 80, 188–191.

Sparavigna, A.; Setaro, M.; Gualandri, V. Cutaneous PH in Children Affected by Atopic Dermatitis and in Healthy Children: A Multicenter Study. Skin Res. Technol. 1999, 5, 221–227.

Seidenari, S.; Francomano, M.; Mantovani, L. Baseline Biophysical Parameters in Subjects with Sensitive Skin. Contact Dermat. 1998, 38, 311–315.

Runeman, J.; Faergemann, O.; Larkö, B. Experimental Candida Albicans Lesions in Healthy Humans: Dependence on Skin PH. Acta Derm. Venereol. 2000, 80, 421–424.

Schürer, N. pH and Acne. In Current Problems in Dermatology; Surber, C., Abels, C., Maibach, H., Eds.; S. Karger AG: Basel, Switzerland, 2018; Volume 54, pp. 115–122. ISBN 978-3-318-06384-4.

Bullock, A.J.; Garcia, M.; Shepherd, J.; Rehman, I.; Sheila, MN. Bacteria induced pH changes in tissue-engineered human skin detected non-invasively using Raman confocal spectroscopy. Appl. Spectrosc. Rev. 2020, 55, 158-171.

Schneider, L.A.; Korber, A.; Grabbe, S.; Dissemond, J. Influence of PH on Wound-Healing: A New Perspective for Wound-Therapy? Arch. Dermatol. Res. 2007, 298, 413–420.

Sahu, P.; Kashaw, S.K.; Kushwah, V.; Sau, S.; Jain, S.; Iyer, A.K. PH Responsive Biodegradable Nanogels for Sustained Release of Bleomycin. Bioorg. Med. Chem. 2017, 25, 4595–4613.

Jung, S.-M.; Yoon, G.H.; Lee, H.C.; Jung, M.H.; Yu, S.I.; Yeon, S.J.; Min, S.K.; Kwon, Y.S.; Hwang, J.H.; Shin, H.S. Thermodynamic Insights and Conceptual Design of Skin-Sensitive Chitosan Coated Ceramide/PLGA Nanodrug for Regeneration of Stratum Corneum on Atopic Dermatitis. Sci. Rep. 2015, 5, 18089.

Zhu, L.; Bratlie, K.M. PH Sensitive Methacrylated Chitosan Hydrogels with Tunable Physical and Chemical Properties. Biochem. Eng. J. 2018, 132, 38–46.

Libánská, A.; Randárová, E.; Lager, F.; Renault, G.; Scherman, D.; Etrych, T. Polymer Nanomedicines with Ph-Sensitive Release of Dexamethasone for the Localized Treatment of Inflammation. Pharmaceutics. 2020, 12, 700.

Klee, S.K.; Farwick, M.; Lersch, P. Triggered Release of Sensitive Active Ingredients upon Response to the Skin’s Natural PH. Colloids Surf. A Physicochem. Eng. Asp. 2009, 338, 162–166.

Qindeel, M.; Ahmed, N.; Sabir, F.; Khan, S.; Ur-Rehman, A. Development of novel pH-sensitive nanoparticles loaded hydrogel for transdermal drug delivery. Drug Dev Ind Pharm. 2019, 45, 629-641.

Asad, M.I.; Khan, D.; Rehman, A.U.; Elaissari, A.; Ahmed, N. Development and In Vitro/In Vivo Evaluation of pH-Sensitive Polymeric Nanoparticles Loaded Hydrogel for the Management of Psoriasis. Nanomaterials (Basel). 2021, 11, 3433.

Kwon, S.S.; Kong, B.J.; Park, S.N. Physicochemical Properties of PH-Sensitive Hydrogels Based on Hydroxyethyl Cellulose–Hyaluronic Acid and for Applications as Transdermal Delivery Systems for Skin Lesions. Eur. J. Pharm. Biopharm. 2015, 92, 146–154.

Kim, A.R.; Lee, S.L.; Park, S.N. Properties and in Vitro Drug Release of PH- and Temperature-Sensitive Double Cross-Linked Interpenetrating Polymer Network Hydrogels Based on Hyaluronic Acid/Poly (N-Isopropylacrylamide) for Transdermal Delivery of Luteolin. Int. J. Biol. Macromol. 2018, 118, 731–740.

Soriano-Ruiz, J.L.; Calpena-Campmany, A.C.; Silva-Abreu, M.; Halbout-Bellowa, L.; Bozal-de Febrer, N.; Rodríguez-Lagunas, M.J.; Clares-Naveros, B. Design and Evaluation of a Multifunctional Thermosensitive Poloxamer-Chitosan-Hyaluronic Acid Gel for the Treatment of Skin Burns. Int. J. Biol. Macromol. 2020, 142, 412–422.

Park, S.H.; Shin, H.S.; Park, S.N. A Novel PH-Responsive Hydrogel Based on Carboxymethyl Cellulose/2-Hydroxyethyl Acrylate for Transdermal Delivery of Naringenin. Carbohydr. Polym. 2018, 200, 341–352.

Shi, M.; Zhang, H.; Song, T.; Liu, X.; Gao, Y.; Zhou, J.; Li, Y. Sustainable Dual Release of Antibiotic and Growth Factor from PH-Responsive Uniform Alginate Composite Microparticles to Enhance Wound Healing. ACS Appl. Mater. Interfaces 2019, 11, 22730–22744.

Banerjee, I.; Mishra, D.; Das, T.; Maiti, T.K. Wound PH-Responsive Sustained Release of Therapeutics from a Poly(NIPAAm-Co- AAc) Hydrogel. J. Biomater. Sci. Polym. Ed. 2012, 23, 111–132.

Koehler, J.; Wallmeyer, L.; Hedtrich, S.; Goepferich, A.M.; Brandl, F.P. PH-Modulating Poly(Ethylene Glycol)/Alginate Hydrogel Dressings for the Treatment of Chronic Wounds. Macromol. Biosci. 2017, 17, 1600369.

Zhu, J.; Han, H.; Ye, T.-T.; Li, F.-X.; Wang, X.-L.; Yu, J.-Y.; Wu, D.-Q. Biodegradable and PH Sensitive Peptide Based Hydrogel as Controlled Release System for Antibacterial Wound Dressing Application. Molecules 2018, 23, 3383.

Mavuso, S.; Marimuthu, T.; Kumar, P.; Kondiah, P.P.D.; du Toit, L.C.; Choonara, Y.E.; Pillay, V. In Vitro, Ex Vivo, and In Vivo Evaluation of a Dual PH/Redox Responsive Nanoliposomal Sludge for Transdermal Drug Delivery. J. Pharm. Sci. 2018, 107, 1028–1036.

Yamazaki, N.; Sugimoto, T.; Fukushima, M.; Teranishi, R.; Kotaka, A.; Shinde, C.; Kumei, T.; Sumida, Y.; Munekata, Y.; Maruyama, K.; et al. Dual-Stimuli Responsive Liposomes Using PH- and Temperature-Sensitive Polymers for Controlled Transdermal Delivery. Polym. Chem. 2017, 8, 1507–1518.

S ̧en, M.; Uzun, C.; Güven, O. Controlled Release of Terbinafine Hydrochloride from PH Sensitive Poly(Acrylamide/Maleic Acid) Hydrogels. Int. J. Pharm. 2000, 203, 149–157.

Vukovic ́, J.S.; Peric ́-Grujic ́, A.A.; Mitic ́-C ́ulafic ́, D.S.; Božic ́Nedeljkovic ́, B.D.; Tomic ́,S.L. Antibacterial Activity of PH-Sensitive Silver(I)/Poly(2-Hydroxyethyl Acrylate/Itaconic Acid) Hydrogels. Macromol. Res. 2020, 28, 382–389.

Zhou, J.; Horev, B.; Hwang, G.; Klein, M.I.; Koo, H.; Benoit, D.S. Characterization and optimization of pH-responsive polymer nanoparticles for drug delivery to oral biofilms. J Mater Chem B. 2016, 4, 3075-3085.

Jiang, H.; Ochoa, M.; Waimin, J.F.; Rahimi, R.; Ziaie, B. A pH-regulated drug delivery dermal patch for targeting infected regions in chronic wounds. Lab Chip. 2019, 19, 2265-2274.

Annegarn, M.; Dirksen, M.; Hellweg, T. Importance of pH in Synthesis of pH-Responsive Cationic Nano- and Microgels. Polymers 2021, 13, 827.

Dong, P.; Sahle, F.F.; Lohan, S.B.; Saeidpour, S.; Albrecht, S.; Teutloff, C.; Bodmeier, R.; Unbehauen, M.; Wolff, C.; Haag, R.; et al. PH-Sensitive Eudragit® L 100 Nanoparticles Promote Cutaneous Penetration and Drug Release on the Skin. J. Control Release 2019, 295, 214–222.

Castillo-Henríquez, L.; Sanabria-Espinoza, P.; Murillo-Castillo, B.; Montes de Oca-Vásquez, G.; Batista-Menezes, D.; Calvo-Guzmán, B.; Ramírez-Arguedas, N.; Vega-Baudrit, J. Topical Chitosan-Based Thermo-Responsive Scaffold Provides Dexketoprofen Trometamol Controlled Release for 24 h Use. Pharmaceutics. 2021, 13, 2100.

Nawaz, A.; Ullah, S.; Alnuwaiser, M.A.; Rehman, F.U.; Selim, S.; Al Jaouni, S.K.; Farid, A. Formulation and Evaluation of Chitosan-Gelatin Thermosensitive Hydrogels Containing 5FU-Alginate Nanoparticles for Skin Delivery. Gels 2022, 8, 537.

Brugués, A.P.; Naveros, B.C.; Calpena Campmany, A.C.; Pastor, P.H.; Saladrigas, R.F.; Lizandra, C.R. Developing Cutaneous Applications of Paromomycin Entrapped in Stimuli-Sensitive Block Copolymer Nanogel Dispersions. Nanomedicine 2015, 10, 227–240.

Wang, W.-Y.; Hui, P.; Wat, E.; Ng, F.; Kan, C.-W.; Lau, C.; Leung, P.-C. Enhanced Transdermal Permeability via Constructing the Porous Structure of Poloxamer-Based Hydrogel. Polymers 2016, 8, 406.

Rancan, F.; Giulbudagian, M.; Jurisch, J.; Blume-Peytavi, U.; Calderón, M.; Vogt, A. Drug Delivery across Intact and Disrupted Skin Barrier: Identification of Cell Populations Interacting with Penetrated Thermoresponsive Nanogels. Eur. J. Pharm. Biopharm. 2017, 116, 4–11.

Indulekha,S.;Arunkumar,P.;Bahadur,D.;Srivastava,R.ThermoresponsivePolymericGelasanOn-DemandTransdermalDrug Delivery System for Pain Management. Mater. Sci. Eng. C 2016, 62, 113–122.

Shau, P.A.; Dangre, P.V.; Potnis, V.V. Formulation of Thermosensitive in situ Otic Gel for Topical Management of Otitis Media. Indian J Pharm Sci. 2015, 77, 764-770.

Arafa, M.G.; El-Kased, R.F.; Elmazar, M.M. Thermoresponsive Gels Containing Gold Nanoparticles as Smart Antibacterial and Wound Healing Agents. Sci. Rep. 2018, 8, 13674.

Osorio-Blanco, E.R.; Rancan, F.; Klossek, A.; Nissen, J.H.; Hoffmann, L.; Bergueiro, J.; Riedel, S.; Vogt, A.; Rühl, E.; Calderón, M. Polyglycerol-Based Thermoresponsive Nanocapsules Induce Skin Hydration and Serve as a Skin Penetration Enhancer. ACS Appl. Mater. Interfaces 2020, 12, 30136–30144.

Lin, S.-Y.; Chen, K.-S.; Run-Chu, L. Design and Evaluation of Drug-Loaded Wound Dressing Having Thermoresponsive, Adhesive, Absorptive and Easy Peeling Properties. Biomaterials 2001, 22, 2999–3004.

Pham, L.; Dang, L.H.; Truong, M.D.; Nguyen, T.H.; Le, L.; Le, V.T.; Nam, N.D.; Bach, L.G.; Nguyen, V.T.; Tran, N.Q. A Dual Synergistic of Curcumin and Gelatin on Thermal-Responsive Hydrogel Based on Chitosan-P123 in Wound Healing Application. Biomed. Pharmacother. 2019, 117, 109183.

Refbacks

  • Saat ini tidak ada refbacks.