Pengembangan Peptida Antimikroba Sintesis (KR-12) dalam Sistem Vesikular Liposom
Abstrak
Peptida Antimikroba (PAM) merupakan salah satu kandidat yang memiliki potensi sebagai anti-infeksi baru yang memiliki aktivitas biologi yang luas dengan peptida yang panjang. Peptida antimikroba dengan jumlah peptida yang lebih pendek juga menarik untuk dikembangkan yaitu peptida antimikroba sintesis KR-12. Namun, peptida antimikroba memiliki keterbatasan dalam hal stabilitas. Liposom merupakan pembawa vesikular yang dapat digunakan sebagai pembawa untuk mengatasi keterbatasan peptida sintesis KR-12. Penelitian ini bertujuan untuk melakukan formulasi dan karakterisasi liposom berbahan aktif antimikroba sintesis KR-12 dengan variasi waktu sonikasi dan hidrasi. Metode yang digunakan pada formulasi liposom yaitu metode hidrasi lapis tipis dengan pengecilan ukuran partikel menggunakan sonikator. Liposom KR-12 yang dihasilkan menunjukkan liposom dispersi berwarna putih susu, berbau khas lesitin dan tanpa endapan. Terdapat variasi formula yaitu F1 (8:2) (30 menit sonikasi, 100 menit hidrasi); F2 (8:2) (45 menit sonikasi, 120 menit hidrasi); F3 (9:1) (30 menit sonikasi, 100 menit hidrasi); F4 (9:1) (45 menit sonikasi, 120 menit hidrasi). Berdasarkan hasil didapatkan ukuran partikel berturut yaitu 311,3 nm; 300,0 nm; 298,8 nm; 254,2 nm. Nilai indeks polidispersitas sebesar 0,393; 0,457; 0,354; dan 0,294, serta zeta potensial sebesar -71,2 mv; -56,3 mv; -68,48; dan -53,9 mv. Waktu sonikasi dan hidrasi yang lebih lama menghasilkan ukuran partikel yang lebih kecil. Konsentrasi kolesterol yang lebih rendah menghasilkan ukuran partikel yang lebih kecil. Berdasarkan hasil analisis efisiensi enkapsulasi didapatkan hasil yaitu F4 88,76%; F3 97,75%; F2 96,09%; F1 99,37%. Waktu hidrasi mempengaruhi penjerapan KR-12, semakin lama waktu hidrasi, semakin tinggi penjerapan KR-12 pada liposom. Preparasi liposom KR-12 dengan metode hidrasi lapis tipis optimal pada waktu sonikasi 45 menit dan waktu hidrasi 120 menit
Kata Kunci
Teks Lengkap:
PDFReferensi
Daftar Pustaka
Makowski, M., Silva, Í. C., Do Amaral, C. P., Gonçalves, S., & Santos, N. C. (2019). Advances in lipid and metal nanoparticles for antimicrobial peptide delivery. Pharmaceutics, 11(11). https://doi.org/10.3390/pharmaceutics11110588
Dombrowski, Y., & Schauber, J. (2012). Cathelicidin LL-37: A defense molecule with a potential role in psoriasis pathogenesis. Experimental Dermatology, 21(5), 327–330. https://doi.org/10.1111/j.1600-0625.2012.01459.x
Nagaoka, I., Tamura, H., & Reich, J. (2020). Therapeutic potential of cathelicidin peptide ll-37, an antimicrobial agent, in a murine sepsis model. International Journal of Molecular Sciences, 21(17), 1–16. https://doi.org/10.3390/ijms21175973
Blasi-Romero, A., Ångström, M., Franconetti, A., Muhammad, T., Jiménez-Barbero, J., Göransson, U., Palo-Nieto, C., & Ferraz, N. (2023). KR-12 Derivatives Endow Nanocellulose with Antibacterial and Anti-Inflammatory Properties: Role of Conjugation Chemistry. ACS Applied Materials & Interfaces, 15(20), 24186–24196. https://doi.org/10.1021/acsami.3c04237
Jacob, B., Park, I. S., Bang, J. K., & Shin, S. Y. (2013). Short KR-12 analogs designed from human cathelicidin LL-37 possessing both antimicrobial and antiendotoxic activities without mammalian cell toxicity. Journal of Peptide Science, 19(11), 700–707.
Li, X., Li, Y., Han, H., Miller, D. W., & Wang, G. (2006). Solution structures of human ll-37 fragments and NMR-based identification of a minimal membrane-targeting antimicrobial and anticancer region. Journal of the American Chemical Society, 128(17), 5776–5785. https://doi.org/10.1021/ja0584875https://doi.org/10.1002/psc.2552
Ren, S. X., Shen, J., Cheng, A. S. L., Lu, L., Chan, R. L. Y., Li, Z. J., Wang, X. J., Wong, C. C. M., Zhang, L., Ng, S. S. M., Chan, F. L., Chan, F. K. L., Yu, J., Sung, J. J. Y., Wu, W. K. K., & Cho, C. H. (2013). FK-16 Derived from the Anticancer Peptide LL-37 Induces Caspase-Independent Apoptosis and Autophagic Cell Death in Colon Cancer Cells. PLoS ONE, 8(5), 1–9. https://doi.org/10.1371/journal.pone.0063641
Yun, H., Min, H. J., & Lee, C. W. (2020). NMR structure and bactericidal activity of KR-12 analog derived from human LL-37 as a potential cosmetic preservative. Journal of Analytical Science and Technology, 11(1). https://doi.org/10.1186/s40543-020-00213-x
Koczulla, R., Von Degenfeld, G., Kupatt, C., Krötz, F., Zahler, S., Gloe, T., Issbrücker, K., Unterberger, P., Zaiou, M., Lebherz, C., Karl, A., Raake, P., Pfosser, A., Boekstegers, P., Welsch, U., Hiemstra, P. S., Vogelmeier, C., Gallo, R. L., Clauss, M., & Bals, R. (2003). An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. Journal of Clinical Investigation, 111(11), 1665–1672. https://doi.org/10.1172/JCI17545
Dawson, R. M., McAllister, J., & Liu, C. Q. (2010). Characterisation and evaluation of synthetic antimicrobial peptides against Bacillus globigii, Bacillus anthracis and Burkholderia thailandensis. International Journal of Antimicrobial Agents, 36(4), 359–363. https://doi.org/10.1016/j.ijantimicag.2010.06.038
Chaerunisaa, A. Y., Dewi, M. K., Sriwidodo, Joni, I. M., & Dwiyana, R. F. (2022). Development of Cathelicidin in Liposome Carrier Using Thin Layer Hydration Method. International Journal of Applied Pharmaceutics, 14(4), 178–185. https://doi.org/10.22159/ijap.2022v14i4.44480
Pan, L., Jiang, D., Pan, L., Meng, Z., Zhuang, Y., Huang, Y., Ye, F., Shi, C., Chen, J., & Pan, J. (2022). ICAM-1-targeted and antibacterial peptide modified polymeric nanoparticles for specific combating sepsis. Materials and Design, 222, 111007. https://doi.org/10.1016/j.matdes.2022.111007
Yeo, L. K., Chaw, C. S., & Elkordy, A. A. (2019). The effects of hydration parameters and co-surfactants on methylene blue-loaded niosomes prepared by the thin film hydration method. Pharmaceuticals, 12(2). https://doi.org/10.3390/ph12020046
Zhang, H. (2017). Thin-film hydration followed by extrusion method for liposome preparation. Methods in Molecular Biology, 1522, 17–22. https://doi.org/10.1007/978-1-4939-6591-5_2
Sułkowski, W. W., Pentak, D., Nowak, K., & Sułkowska, A. (2005). The influence of temperature, cholesterol content and pH on liposome stability. Journal of Molecular Structure, 744–747(SPEC. ISS.), 737–747. https://doi.org/10.1016/j.molstruc.2004.11.075
Khadke, S., Stone, P., Rozhin, A., Kroonen, J., & Perrie, Y. (2018). Point of use production of liposomal solubilised products. International Journal of Pharmaceutics, 537(1–2), 1–8. https://doi.org/10.1016/j.ijpharm.2017.12.012
Trucillo, P., Campardelli, R., & Reverchon, E. (2017). Supercritical CO2 assisted liposomes formation: Optimization of the lipidic layer for an efficient hydrophilic drug loading. Journal of CO2 Utilization, 18, 181–188. https://doi.org/10.1016/j.jcou.2017.02.001
Zhang, H. (2017). Thin-film hydration followed by extrusion method for liposome preparation. Methods in Molecular Biology, 1522, 17–22. https://doi.org/10.1007/978-1-4939-6591-5_2
Xiang, B., & Cao, D.-Y. (2018). Preparation of Drug Liposomes by Thin-Film Hydration and Homogenization. Liposome-Based Drug Delivery Systems, 1–11. https://doi.org/10.1007/978-3-662-49231-4_2-1
Nsairat, H., Khater, D., Sayed, U., Odeh, F., Al Bawab, A., & Alshaer, W. (2022). Liposomes: structure, composition, types, and clinical applications. Heliyon, 8(5), e09394. https://doi.org/10.1016/j.heliyon.2022.e09394
Bulbake, U., Doppalapudi, S., Kommineni, N., & Khan, W. (2017). Liposomal formulations in clinical use: An updated review. Pharmaceutics, 9(2), 1–33. https://doi.org/10.3390/pharmaceutics9020012
Lombardo, D., & Kiselev, M. A. (2022). Methods of Liposomes Preparation: Formation and Control Factors of Versatile Nanocarriers for Biomedical and Nanomedicine Application. Pharmaceutics, 14(3). https://doi.org/10.3390/pharmaceutics14030543
Abbasi, H., Kouchak, M., Mirveis, Z., Hajipour, F., Khodarahmi, M., Rahbar, N., & Handali, S. (2023). What We Need to Know about Liposomes as Drug Nanocarriers: An Updated Review. Advanced Pharmaceutical Bulletin, 13(1), 7–23. https://doi.org/10.34172/apb.2023.009
Tampucci, S., Paganini, V., Burgalassi, S., Chetoni, P., & Monti, D. (2022). Nanostructured Drug Delivery Systems for Targeting 5-α-Reductase Inhibitors to the Hair Follicle. Pharmaceutics, 14(2). https://doi.org/10.3390/pharmaceutics14020286
Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., & Mozafari, M. R. (2018). Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 10(2), 1–17. https://doi.org/10.3390/pharmaceutics10020057
Németh, Z., Csóka, I., Semnani Jazani, R., Sipos, B., Haspel, H., Kozma, G., Kónya, Z., & Dobó, D. G. (2022). Quality by Design-Driven Zeta Potential Optimisation Study of Liposomes with Charge Imparting Membrane Additives. Pharmaceutics, 14(9). https://doi.org/10.3390/pharmaceutics14091798
Al Shuwaili, A. H., Rasool, B. K. A., & Abdulrasool, A. A. (2016). Optimization of elastic transfersomes formulations for transdermal delivery of pentoxifylline. European Journal of Pharmaceutics and Biopharmaceutics, 102(February), 101–114. https://doi.org/10.1016/j.ejpb.2016.02.013
Krohn, R. I. (2002). The Colorimetric Detection and Quantitation of Total Protein. Current Protocols in Cell Biology, 15(1), 1–28. https://doi.org/10.1002/0471143030.cba03hs15
Wang, J. Y., Baek, Y., Jeong, E. W., & Lee, H. G. (2023). Effect of coenzyme Q10 encapsulation with different sterols on stability, antioxidant activity, and cellular properties of nanoliposomes. Food Bioscience, 56(June), 103179. https://doi.org/10.1016/j.fbio.2023.103179
Sadeghi, S., Bakhshandeh, H., Ahangari Cohan, R., Peirovi, A., Ehsani, P., & Norouzian, D. (2019). Synergistic Anti-Staphylococcal Activity Of Niosomal Recombinant Lysostaphin-LL-37. International Journal of Nanomedicine, 14, 72 9777–9792. https://doi.org/10.2147/IJN.S230269
Refbacks
- Saat ini tidak ada refbacks.