Pengaruh Metode Kokristalisasi Terhadap Laju Disolusi Asam Mefenamat Dengan Menggunakan Asam Sitrat Sebagai Koformer

Rizzqi Septiprajaamalia Rosdianto

Abstrak

Asam mefenamat merupakan obat antiinflamasi non steroid (AINS) yang memiliki kelarutan rendah dalam air, sehingga dapat mempengaruhi laju disolusinya. Kokristalisasi merupakan salah satu metode yang dapat meningkatkan kelarutan dan disolusi zat aktif melalui interaksi dengan koformer. Penelitian ini bertujuan untuk mengevaluasi pengaruh metode kokristalisasi terhadap laju disolusi asam mefenamat dengan menggunakan asam sitrat sebagai koformer. Kokristalisasi dilakukan dengan metode Liquid-Assisted Grinding (LAG) menggunakan etanol 96% sebagai pelarut. Karakterisasi hasil kokristal dilakukan menggunakan Fourier Transform Infrared (FTIR) untuk mengidentifikasi interaksi molekuler, Differential Scanning Calorimetry (DSC) untuk analisis termal, Powder X-Ray Diffraction (PXRD) untuk melihat perubahan kristalinitas, dan Scanning Electron Microscope (SEM) untuk mengamati morfologi partikel. Hasil karakterisasi menunjukkan adanya perubahan spektrum FTIR yang mengindikasikan pembentukan ikatan hidrogen antara asam mefenamat dan asam sitrat. Analisis DSC menunjukkan perubahan titik lebur, menandakan terbentuknya fase baru. Data PXRD mengungkapkan perubahan pola difraksi yang mengindikasikan munculnya perbedaan struktur kristalinitas dibandingkan dengan komponen murninya. Hasil SEM menunjukkan perubahan morfologi partikel yang lebih homogen dan berukuran lebih kecil. Uji disolusi menunjukkan bahwa KKAM 1:2 secara signifikan meningkatkan laju disolusi dibandingkan bentuk murninya. Dengan demikian, metode kokristalisasi menggunakan LAG dengan asam sitrat sebagai koformer terbukti efektif dalam meningkatkan laju disolusi asam mefenamat.

 

Kata Kunci

Asam mefenamat; asam sitrat; disolusi; kokristalisasi; Liquid-Assisted Grinding

Teks Lengkap:

PDF

Referensi

Nurhikmah, W.; Sumirtapura, Y. C.; Pamudji, J. S. Dissolution Profile of Mefenamic Acid Solid Dosage Forms in Two Compendial and Biorelevant (FaSSIF) Media. Sci Pharm 2016, 84 (1), 181–190. https://doi.org/10.3797/scipharm.ISP.2015.09.

Huang, Y.; Kuminek, G.; Roy, L.; Cavanagh, K. L.; Yin, Q.; Rodríguez-Hornedo, N. Cocrystal Solubility Advantage Diagrams as a Means to Control Dissolution, Supersaturation, and Precipitation. Mol Pharm 2019, 16 (9), 3887–3895. https://doi.org/10.1021/acs.molpharmaceut.9b00501.

Umar, S.; Farnandi, R.; Salsabila, H.; Zaini, E. Multicomponent Crystal of Trimethoprim and Citric Acid: Solid State Characterization and Dissolution Rate Studies. Open Access Maced J Med Sci 2022, 10, 141–145. https://doi.org/10.3889/oamjms.2022.7920.

Abdullah, A.; Tahar, N. Dissolution Improvement of Mefenamic Acid Through Cocrystallization with Aminobenzoic Acid Using Liquid-Assisted Grinding Method. Journal Of Pharmacy and Science) 2022, 5 (2), 46–53.

Rachmaniar, R.; Riasari, H.; Fauziah, L.; Kenti; Ferdiansyah, R. The Effect of Cocrystallization Method and Citric Acid as Coformer on Water Solubility of Ethyl P-Metoxycinnamate Particle. AIP Conf Proc 2020, 2219. https://doi.org/10.1063/5.0003178.

Bandaru, R. K.; Rout, S. R.; Kenguva, G.; Gorain, B.; Alhakamy, N. A.; Kesharwani, P.; Dandela, R. Recent Advances in Pharmaceutical Cocrystals: From Bench to Market. Front Pharmacol 2021, 12. https://doi.org/10.3389/fphar.2021.780582.

Singh, M.; Barua, H.; Jyothi, V. G. S. S.; Dhondale, M. R.; Nambiar, A. G.; Agrawal, A. K.; Kumar, P.; Shastri, N. R.; Kumar, D. Cocrystals by Design: A Rational Coformer Selection Approach for Tackling the API Problems. Pharmaceutics 2023, 15 (4). https://doi.org/10.3390/pharmaceutics15041161.

Rong, Y.; Xue, S.; Li, S.; Pang, S. Study on Preparation of Pillararene Cocrystals by Liquid-Assisted Grinding. J Phys Conf Ser 2023, 2539 (1). https://doi.org/10.1088/1742-6596/2539/1/012050.

Karagianni, A.; Malamatari, M.; Kachrimanis, K. Pharmaceutical Cocrystals: New Solid Phase Modification Approaches for the Formulation of APIs. Pharmaceutics 2018, 10 (1). https://doi.org/10.3390/pharmaceutics10010018.

Leyva-Porras, C.; Cruz-Alcantar, P.; Espinosa-Solís, V.; Martínez-Guerra, E.; Piñón-Balderrama, C. I.; Martínez, I. C.; Saavedra-Leos, M. Z. Application of Differential Scanning Calorimetry (DSC) and Modulated Differential Scanning Calorimetry (MDSC) in Food and Drug Industries. Polymers. MDPI AG January 1, 2020. https://doi.org/10.3390/polym12010005.

Janovszky, D.; Sveda, M.; Sycheva, A.; Kristaly, F.; Zámborszky, F.; Koziel, T.; Bala, P.; Czel, G.; Kaptay, G. Amorphous Alloys and Differential Scanning Calorimetry (DSC). J Therm Anal Calorim 2022, 147 (13), 7141–7157. https://doi.org/10.1007/s10973-021-11054-0.

National Center for Biotechnology Information. Mefenamic Acid. National Library of medicine. https://pubchem.ncbi.nlm.nih.gov/compound/Mefenamic-Acid (accessed 2025-01-13).

Tsioptsias, C.; Panagiotou, A.; Mitlianga, P. Thermal Behavior and Infrared Absorbance Bands of Citric Acid. Applied Sciences (Switzerland) 2024, 14 (18). https://doi.org/10.3390/app14188406.

Lambros, M.; Tran, T.; Fei, Q.; Nicolaou, M. Citric Acid: A Multifunctional Pharmaceutical Excipient. Pharmaceutics 2022, 14 (5). https://doi.org/10.3390/pharmaceutics14050972.

Saganowska, P.; Wesolowski, M. DSC as a Screening Tool for Rapid Co-Crystal Detection in Binary Mixtures of Benzodiazepines with Co-Formers. J Therm Anal Calorim 2018, 133 (1), 785–795. https://doi.org/10.1007/s10973-017-6858-3.

Yamazaki, M.; Shimamura, E.; Hanawa, T.; Kawano, Y. Microparticulated Mefenamic Acid with High Dispersion Stability for Pediatric Dosage Form. Children 2022, 9 (6). https://doi.org/10.3390/children9060861.

Wicaksono, Y.; Setyawan, D.; Siswandono; Siswoyo, T. A. Preparation and Characterization of a Novel Cocrystal of Atorvastatin Calcium with Succinic Acid Coformer. Indonesian Journal of Chemistry 2019, 19 (3), 660–667. https://doi.org/10.22146/ijc.35801.

Doloking, H.; Sartika, A. T.; Tahar, N. Formation of Hydrochlorothiazide – Para-Aminobenzoic Acid Cocrystals by Solvent Evaporation Method. ad-Dawaa’ Journal of Pharmaceutical Sciences 2021, 4 (1). https://doi.org/10.24252/djps.v4i1.21301.

Isnaeni, N. L.; Trisna Wulandari, W.; Alifiar, I. Prosiding Seminar Nasional Diseminasi Penelitian Program Studi S1 Farmasi 2021 STIKes BTH Tasikmalaya Tasikmalaya. 2021.

Shishkina, S. V.; Vaksler, Y. A.; Konovalova, I. S.; Dyakonenko, V. V.; Varchenko, V. V. Quantum Chemical Study on Mefenamic Acid Polymorphic Forms. ACS Omega 2022, 7 (21), 17544–17554. https://doi.org/10.1021/acsomega.1c06967.

Kumar Bandaru, R.; Rout, S. R.; Kenguva, G.; Gorain, B.; Alhakamy, N. A.; Kesharwani, P.; Dandela, R. Recent Advances in Pharmaceutical Cocrystals: From Bench to Market. Front Pharmacol 2021, 12. https://doi.org/10.3389/fphar.2021.780582.

Jassim, Z. E.; Al-Kinani, K. K.; Alwan, Z. S. Preparation and Evaluation of Pharmaceutical Cocrystals for Solubility Enhancement of Dextromethorphan HBr. International Journal of Drug Delivery Technology 2021, 11 (4), 1342–1349. https://doi.org/10.25258/ijddt.11.4.37.

Gong, N.; Yu, H.; Wang, Y.; Xing, C.; Hu, K.; Du, G.; Lu, Y. Crystal Structures, Stability, and Solubility Evaluation of a 2:1 Diosgenin–Piperazine Cocrystal. Nat Prod Bioprospect 2020, 10 (4), 261–267. https://doi.org/10.1007/s13659-020-00256-y.

Padrela, L.; Rodrigues, M. A.; Tiago, J.; Velaga, S. P.; Matos, H. A.; Azevedo, E. G. De. Tuning Physicochemical Properties of Theophylline by Cocrystallization Using the Supercritical Fluid Enhanced Atomization Technique. Journal of Supercritical Fluids 2014, 86, 129–136. https://doi.org/10.1016/j.supflu.2013.12.011.

Nakapraves, S.; Warzecha, M.; Mustoe, C. L.; Srirambhatla, V.; Florence, A. J. Prediction of Mefenamic Acid Crystal Shape by Random Forest Classification. Pharm Res 2022, 39 (12), 3099–3111. https://doi.org/10.1007/s11095-022-03450-4.

Macaringue, E. G. J.; Li, S.; Li, M.; Gong, J.; Tang, W. Crystallization Behavior of Citric Acid Based on Solution Speciation and Growth Kinetics; 2020.

Ainurofiq, A.; Mauludin, R.; Mudhakir, D.; Soewandhi, S. N. Synthesis, Characterization, and Stability Study of Desloratadine Multicomponent Crystal Formation; 2018; Vol. 13.

Guo, M.; Sun, X.; Chen, J.; Cai, T. Pharmaceutical Cocrystals: A Review of Preparations, Physicochemical Properties and Applications. Acta Pharm Sin B 2021, 11 (8), 2537–2564. https://doi.org/10.1016/j.apsb.2021.03.030.

Wang, Y.; Zhao, Q.; Hu, Y.; Sun, L.; Bai, L.; Jiang, T.; Wang, S. Ordered Nanoporous Silica as Carriers for Improved Delivery of Water Insoluble Drugs: A Comparative Study between Three Dimensional and Two Dimensional Macroporous Silica. Int J Nanomedicine 2013, 8, 4015–4031. https://doi.org/10.2147/IJN.S52605.

Huang, Z.; Staufenbiel, S.; Bodmeier, R. Combination of Co-Crystal and Nanocrystal Techniques to Improve the Solubility and Dissolution Rate of Poorly Soluble Drugs. Pharm Res 2022, 39 (5), 949–961. https://doi.org/10.1007/s11095-022-03243-9.

Refbacks