KARAKTERISTIK MORFOTEKTONIK SUB DAS CIKAPUNDUNG DAN KAITANYA TERHADAP RESPON LITOLOGI GUNUNGAPI **KUARTER**

Supriyadi^{1*}, Nana Sulaksana¹, Ismawan ¹, Pradnya P. Raditya¹, Murni Sulastri S¹ ¹Fakultas Teknik Geologi Universitas Padjadjaran, Bandung

*Korespondensi: supriyadizircon94@gmail.com

ABSTRAK

Sub DAS Cikapundung merupakan salah satu Sub DAS yang berada di hulu Sungai Citarum.Penelitian ini bertujuan untuk mengidentifikasi patahan aktif dan respon litologi pada Sub DAS Cikapundung berdasarkan analisis morfometri yang berupa; rasio percabangan sungai(Rb), sinusitas muka gunung (Smf), rasio perbandingan lebar dasar lembah dengan tinggi lembah (Vf),dan asimetri sungai (AF) pada sub DAS Cikapundung. Berdasarkan parameter analisis morfometri tersebut dapat simpulkan bahwa di daerah penelitian terdapat patahan aktif kelas menengah sampai lemah. Namun terdapat perbedaan variasi nilai Smf dan Vf yang signifikan menunjukan adanya pengaruh respon litologi gunungapi kuarter terhadap kajian morfotektonik daerah penelitian. Litologi gunungapi kuarter yang kurang resisten terhadap pelapukan dan erosi ditunjukan dengan adanya nilai Smf dan Vf yang lebih tinggi.

Kata Kunci: Sub DAS Cikapundung, Active Fault, Respon Litologi

ABSTRACT

Cikapundung Sub-watershed is one of the sub-watersheds located in the upper reaches of the Ciatrum River.This study aimed to identify the level of active fault and lithology response based on morphometry analysis; bifurcation ratio(Rb), sinuosity of mountain front (Smf), ratio of valley floor width to valley height (Vf), and asymmetry factors (Af). Based on the parameters of the morphometric analysis, it can be concluded that in the research area there is active fault of middle to weak class. However, there are differences of variation value Smf and Vf which showed significant influence of lithology response to morphotectonic study in research area. Quarterly volcanic lithology is less resistant to weathering and erosion that indicated by higher Smf and Vf values.

Keywords: Cikapundung Sub-watershed, Active Fault, LithologyResponse

1. PENDAHULUAN

Kondisi tatanan geologi di Jawa Barat sangat unik untuk dipelajari, karena letak Jawa Barat secara geologi dipengaruhi oleh pertemuan lempeng Indo- Australia lempeng Eurasia. Oleh karena pergerakan lempeng tersebut menyebabkan kondisi struktur geologi salah satunya adalah struktur sesar. Struktur sesar yang aktif dapat menjadi sumber bencana salah satunya adalah bencana gempa bumi seperti zona sesar aktif utama yang ada di jawa barat yang menurut Soehaimi (2011) menyatakan bahwa Sesar aktif di Jawa

Barat yang menjadi sumber gempa bumi adalah sesar aktif Cimandiri, sesar aktif Baribis dan sesar aktif Lembang. Dari kondisi geologi tersebut, salah satu yang menarik untuk dibahas adalah studi karakteristik sub DAS Cikapundung dan kaitannva terhadap respon litologi gunungapi kuarter yang masih berhubungan dengan aktifitas sesar Lembang.

Studi morfotektonik mempelajari tentang segala hal menyangkut hubungan antara struktur geologi dengan bentukan lahan (Stewart and Hancock, 1994 dalam Hidayat, 2010). Dalam penelitian ini studi morfotektonik melalui analisis morfometri

digunakan untuk mengidentifikasi tingkat aktifitas tektonik Sub DAS Cikapundung Kecamatan Lembang, Kabupaten Bandung Barat.

2. TINJAUAN PUSTAKA

Menurut Silitonga (1973), endapan tertua pada wilayah daerah penelitian secara regional merupakan endapan hasil vulkanik tua tak teruraikan (Qvu) dengan litologi breksi gunungapi, lahar, dan lava berselangseling. Satuan ini berumur Pleistosen Atas dan satuan ini pula disamakan kepada Formasi Cikapundung Koesoemadinata dan Hartono (1981) dan merupakan bagian dari Zona Pegunungan Kompleks Sunda Yang Telah Padam pada stratigrafi oleh Bemmelen(1949).Selanjutnya, Silitonga (1973) mengatakan bahwa endapan tersebut diikuti oleh Endapan Hasil Vulkanik Muda Tak Teruraikan (Qyu) dengan litologi pasir tufaan (Qyd) , lapili, breksi, lava, dan agglomerat, dan tuffa berbatuapung (Qyt). Satuan ini berumur Holosen dan satuan ini disamakan dengan Formasi Cibeureum dan Formasi Kosambi pada Koesoemadinata dan Hartono (1981) serta merupakan bagian muda dari Zona Pegunungan Kompleks Sunda Yang Telah Padam pada stratigrafi oleh Bemmelen (1949).Endapan setelahnya diikuti oleh Endapan Kolovium yang terdiri dari reruntuhan hasil volkanik tua, endapan ini disamakan dengan Formasi Cikadang pada Koesoemadinata dan Hartono (1981) Endapan Kolovium dan Endapan Aluvium merupakan satuan vang berumur Holosen,dimana Endapan Kolovium relatif lebih tua daripada Endapan Aluvium.

3. METODE

Metode penelitian yang digunakan dalam penelitian ini adalah analisis studio yang menggunakan software Mapinfo dan Global Mapper untuk mengolah data parameter morfometri DAS. Morfometri DAS dapat diartikan sebagai nilai kuantitatif pada jaringan sungai (Van Zuidam, 1985). Perhitungan morfometri DAS yang digunakan dalam penelitian ini

berupa rasio percabangan sungai(Rb), sinusitas muka gunung (*Smf*), rasio perbandingan lebar dasar lembah dengan tinggi lembah (*Vf*),dan asimetri sungai (*AF*) pada sub DAS Cikapundung.

Rasio Percabangan Sungai


Orde atau rasio cabang sungai (bifurcation ratio/Rb) adalah posisi percabangan alur sungai di dalam urutannya terhadap induk sungai dalam DAS (Soewarno, 1991). Penentuan nilai orde sungai dapat menggunakan beberapa metode, salah satunya adalah metode Strahler. Penentuan orde sungai menurut Strahler (1952), yaitu segmen yang tidak memiliki percabangan merupakan orde pertama. Ketika dua segmen orde pertama bergabung maka terbentuk orde kedua, dan seterusnya.

$$Rb = \frac{Nu}{Nu+1}$$

Keterangan:

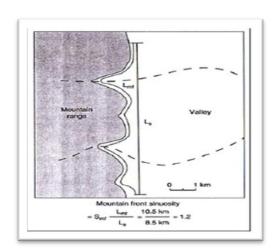
 $\begin{array}{ll} Rb & : Indeks \ rasio \ cabang \ sungai \\ N_u & : Jumlah \ alur \ sungai \ orde \ ke-u \\ N_{u+1} & : Jumlah \ alur \ sungai \ orde \ ke \ u+1 \end{array}$

Strahler (1964; dalam Verstappen, 1983) menyatakan bahwa jika suatu DAS yang memiliki rasio cabang sungai atau *bifurcation ratio* (Rb) kurang dari 3 atau lebih dari 5 maka diindikasikan DAS tersebut telah mengalami deformasi akibat pengaruh tektonik.

Gambar 3. Penentuan Orde Sungai Menurut Stahler (1964)

Kelokan Muka Pegunungan

Kelokan muka pegunungan (mountain front sinuosity/Smf)merupakan rangkaian pegunungan yang terdapat pada depan/muka. Kelokan bagian muka pegunungan merupakan suatu indeks yang mencerminkan keseimbangan antara gaya/kekuatan erosi yang mempunyai kecendurangan memotong sepanjang lekukan pegunungan muka dan kekuatan tektonik menghasilkan yang secara langsung pegunungan muka dan bertepatan aktif dengan patahan zona yang mencerminkan tektonik aktif. Doornkamp (1986), membagi klasifikasi kelas tektonik berdasarkan nilai Smf, yaitu kelas tektonik aktif kuat (Smf bernilai 1,2-1,6), kelas tektonik aktif- lemah (Smf bernilai 1,8-3,4) dan kelas tektonik tidak aktif (Smf bernilai 2,0-7,0).

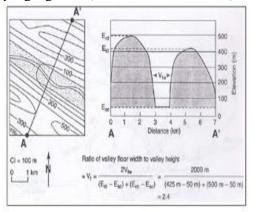

Pegunungan muka (Smf) dapat dihitung dengan menggunakan persamaan:

$$Smf = Lmf / Ls$$

Keterangan:

Lmf = panjang pegunungan muka sepanjang bagian bawah/lembah.

Ls = panjang secara lurus pegunungan muka.



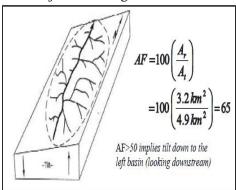
Gambar 4. Metode Perhitungan Kelokan Muka Pegunungan Menurut Killer dan Pinter (1996)

Perbandingan Lebar dan Tinggi Lembah

Perbandingan lebar dan tinggi lembah (ratio of valley floor width to valley height/ Vf) merupakan nilai perbandingan antara lebar dan tinggi lembah pada suatu daerah.

Nilai Vf tinggi berasosiasi dengan kecepatan pengangkatan rendah, sehingga sungai akan memotong secara luas pada dasar lembah dan bentuk lembah akan semakin melebar. Sedangkan nilai Vf rendah akan merefleksikan lembah dalam dan mencerminkan penambahan aktivitas sungai, hal ini berasosiasi dengan kecepatan pengangkatan (Keller dan Pinter, 1996).

Gambar 5. Metode Perhitungan Rasio Lebar dan Tinggi Lembah (Keller dan Pinter, 1996)


Menurut Bull (2007) menyatakan bahwa nilai V_f ratio pada muka pegunungan yang aktif kelas I (0,05-0,5), kelas II nilai V_f berkisar berkisar antara (0,5-3,6), sedangkan kelas III nilai V_f berkisar antara (2-47).

Faktor Asimetri Sungai

Geometri jejaring sungai dapat dijelaskan baik secara kualitatif maupun kuantitatif. Faktor asimetri (*Asymmetry Factor/Af*) dapat memberikan informasi deformasi tektonik aktif dengan membedakan pola dan geometri. Faktor asimetri merupakan salah satu analisis kuantitatif drainage basin untuk mendeteksi kemiringan tektonik (*tectonic tilting*) baik pada skala drainage basin kecil maupun

luas (Keller dan Pinter, 1996 dan Pinter, 1996).

Di mana Ar = luas cekungan di sebelah kanan dari tubuh aliran sungai, dan At = luas total dari cekungan sungai. Dari hasil perhitungan faktor asimetri, Menurut Keller dan Pinter (1996), apabila harga yang diperoleh (AF = 50) maka daerah tersebut relatif stabil, artinya proses tektonik yang bekerja sangat kecil. Apabila nilai AF lebih besar atau kurang dari 50, maka terjadi kemiringan akibat tektonik.

Gambar 6. Metode Perhitungan Faktor Asimetri Sungai (Keller dan Pinter, 1996)

Metode ini sangat bagus diterapkan pada drainage basin yang mendasarinya pada batuan yang sama. Metode ini cukup baik untuk aplikasi tektonik karena tidak terpengaruh oleh faktor litologi (seperti perlapisan batuan sedimen) maupun iklim lokal (seperti perbedaan vegetasi).

4. HASIL DAN PEMBAHASAN

Orde dan Tingkat Percabangan Sungai

Sebagian DAS Cikapundung yang dianalisis pada sub bab ini memiliki kisaran orde dari mulai orde ke- 1 sampai orde ke- 5 dengan jumlah total segmen sungai sebanyak 243 segmen dengan total jumlah panjang segmen sungai tersebut secara keseluruhan mencapai 93,76 km.Nilai Rb Orde 1-2 dari 10 sub DAS Cikapundung terdapat nilai yang kurang dari 3 atau lebih dari 5 yaitu pada sub DAS Ckp1 dengan nilai Rb bernilai 9 pada orde 1-2, dan Ckp10 dengan nilai Rb 2,5 pada orde1-2. Nilai Rb tersebut menurut Stahler(1964)

mengidentifikasikan adanya faktor deformasi akibatt pengaruh tektonik.

Kelokan Muka Pegunungan

Berdasarkan hasil perhitungan nilai kelokan muka pegunungan (Smf) pada daerah penelitian berkisar antara1,20–3,60 dengan rata- rata tiap subdas bernilai 1,80 - 3,08 yang menurut Doornkamp (1986) termasuk kedalam tektonik menengah sampai lemah.

Nilai Smf pada sub DAS Ckp6, Ckp9, dan Ckp10 memiliki variasi nilai yang berbeda. Pada Sub DAS Ckp 6 memiliki nilai Smf terendah yaitu 1,2 sedangkan Smf tertinggi dapat mencapai 3,37. Sedangkan pada Sub DAS Ckp9 memilki nilai Smf terendah yaitu 2,46 sedangkan Smf tertinggi dapat mencapai 4.09. Demikian juga pada Sub DAS Ckp10 memilki nilai Smf terendah 2,5 sedangkan Smf tertingginya dapat mencapai 2,85. Hal tersebut dikarenakan adanya faktor respon litologi yang mempengaruhi selain dari faktor tektoniknya. Nilai Smf yang kecil lebih dipengaruhi oleh patahan aktif pada daerah tersebut dengan tingkat erosi yang lebih rendah dengan bentuk lembah V yang umumnya terjadi pada litologi yang lebih resisten seperti breksi dan lava (satuan Qvu dan Qyu). Sedangkan nilai Smf yang tinggi lebih dipengaruhi oleh faktor litologi yang kurang resisten sehingga tingkat erosi lebih tinggi merubah bentuk dari lembah sungai menjadi lebih U, umumnya Smf yang besar pada daerah penelitian berada pada litologi tuff, tuffan pasiran, dan kolluvium (satuan Qyt,Qyd,dan Qc).

Perbandingan Lebar dan Tinggi Lembah (VF)

Nilai Vf rata- rata blok utara senilai 1,42nilai ini lebih besar dari blok selatan senilai 0,96. Menurut Bull (2007) kedua nilai Vf rata- rata tersebut termasuk dalam kelas tektonik menengah.

Nilai Vf1 sampai dengan Vf80 umumnya memiliki variasi nilai yang hampir sama atau tidak banyak selisihnya kecuali pada perhitungan nilai Vf25, Vf26, Vf28, Vf35, Vf36, Vf39, Vf63, Vf71, dan Vf75 yang memiliki nilai Vf lebih besar.

Nilai Vf yang lebih besar tersebut dapat teradi akibat adanya faktor respon litologi yang kurang resisten sehingga erosi berlangsung sangat tinggi dan mengubah bentuk lembah sungai menjadi lebih lebar dan berbetuk U.

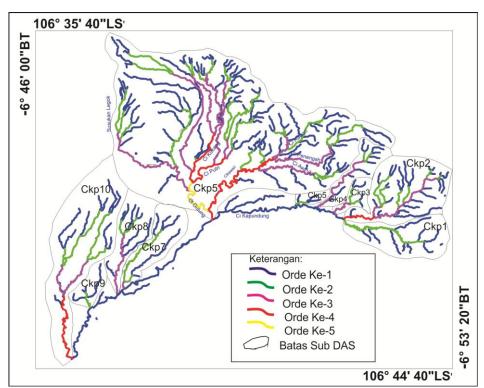
Faktor Asimetri Sungai (Af)

Berdasarkan nilai perhitungan nilai Faktor Asimetri Sungai (Af) pada 10 Sub DAS daerah penelitian memilki Af kurang dari 50 dan lebih dari 50, hal ini menunjukan bahwa bentuk cekungan pengaliran asimetri akibat adanya proses tilting yang bersosiasi dengan dengan patahan aktif daerah penelitian.

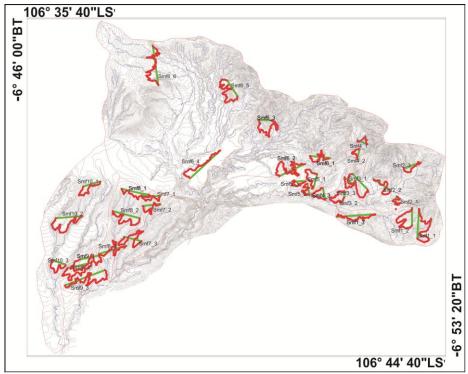
5. KESIMPULAN

Berdasarkan perhitungan morfometri Rb,SMf,Vf, dan Af daerah penelitian terdapat indikasi adanya patahan aktif kelas menengah sampai lemah.Nilai Smf dan Vf yang besar diakibatkan adanya faktor respon litologi gunungapi kuarter yang kurang resisten terhadap pelapukan dan erosi sehingga membentuk lembah U.

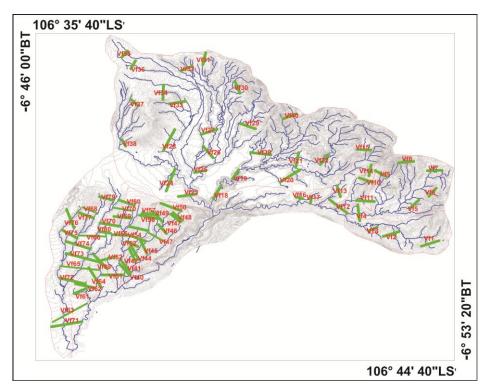
DAFTAR PUSTAKA

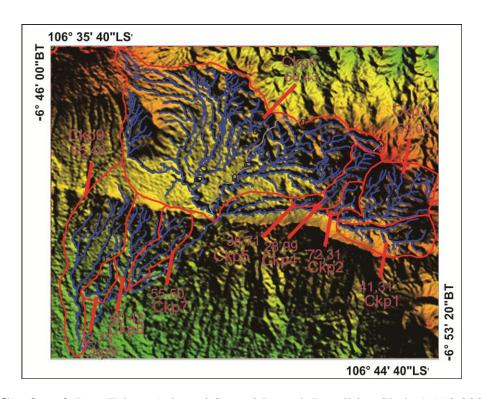

- Bull, William B. 2007. Tectonic Geomorphology of Mountains: A New Approach to Paleoseismology. Blackwell Publishing Ltd.
- Doornkamp, J. C. 1986.

 Geomorphological approaches
 to the study of neotectonics.
 Journal of Geological Society,
 Vol. 143: 335-342.


- Keller, E.A., and Pinter, N. 1996. *Active Tectonic Earthquake*, Uplift and Landscape, Prentice hall, Upper saddle river, New Jersey
- Koesoemadinata, R.P. & Hartono, 1981, Stratigrafi dan Sedimentasi daerah Bandung, *Pros. PIT Ke X IAGI*, Jakarta, hal. 318-338.
- Silitonga. 1973. Peta Lembar Geologi Skala 1 :100000 Lembar Bandung. Pusat Penelitian dan Pengembangan Geologi : Bandung
- Soehaemi, A,2011. Seismotektonik Jawa Barat dan mikrozonasi potensi bencana gempa bumi DKI Jakarta. Pusat Survei Geologi. Badan Geologi. Bandung.
- Soewarno. 1991. Hidrologi:

 Pengukuran dan Pengolahan
 Data Aliran Sungai
 (Hidrometri).Bandung: Nova
- Strahler A. N.. 1952. *Hypsometric* (Area-Altitude) Analysis of Erosional Topology. Geological Society of America Bulletin 63.
- Van Bemmelen, R.W. 1949. The Geology of Indonesia, vol. I A:
 General Geology of Indonesia and Adjacement Archipelagoes. Martinus Nijhoff. The Hague.


5


Gambar 1. Peta rasio Percabangan Sungai (Rb)

Gambar 2. Peta Kelokan Muka Pegunungan Daerah Penelitian Skala 1:150.000

Gambar 3. Peta Perbandingan Lebar dan Tinggi Lembah Daerah Penelitian Skala 1:150.000

Gambar 4. Peta Faktor Asimetri Sungai Daerah Penelitian Skala 1:150.000

Tabel 1. Pehitungan Nilai Vf Blok Utara

Kode	Eld (m)	Erd (m)	Esc(m)	Vfw (m)	Vf	Faktor Dominan	Satuan litologi	
Vf1	1649		1600	5	0,07	Tektonik	Qyu	
Vf2	1525		1462	44	-	Tektonik	Qyu	
Vf3	1412	1424	1400	17	0,94	Tektonik	Qyu	
Vf4	1387	1387	1337	68		Tektonik	Qyu	
Vf5	1287	1224	1211	63	1,42	Tektonik	Qyu	
Vf6	1674	1724	1650	44		Tektonik	Qyu	
Vf7	1662	1649	1625	40	1,31	Tektonik	Qyu	
Vf8	1937	1937	1875	72	1,16	Tektonik	Qyu	
Vf9	1737	1699	1686	33	1,03	Tektonik	Qyu	
Vf10	1662	1612	1599	14	0,37	Tektonik	Qyu	
Vf11	1482	1400	1387	42	0,78	Tektonik	Qyu	
Vf12	1362	1375	1324	47	1,06	Tektonik	Qyu	
Vf13	1349	1362	1325	76	2,49	Tektonik	Qyu	
Vf14	1649	1662	1637	35	1,89	Tektonik	Qyu	
Vf15	1700	1687	1649	9	0,20	Tektonik	Qyu	
Vf16	1262	1262	1237	33	1,32	Tektonik	Qyu	
Vf17	1274	1248	1237	46	1,92	Tektonik	Qyu	
Vf18	1099	1100	1087	20	1,60	Tektonik	Qyt	
Vf19	1124	1137	111	181	0,18	Tektonik	Qyt	
Vf20	1287	1224	1211	63	1,42	Tektonik	Qvu	
Vf21	1224	1224	1187	29	0,78	Tektonik	Qvu	
Vf22	1337	1287	1274	64	1,68	Tektonik	Qvu	
Vf23	1224	1175	1112	36	0,41	Tektonik	Qyd, Qyt	
Vf24	1162	1198	1137	44	1,02	Tektonik	Qyd, Qyt	
Vf25	1162	1162	1137	96	3,84	Litologi	Qyt	
Vf26	1174	1174	1132	132	3,14	Litologi	Qyd, Qyt	
Vf27	1199	1199	1162	92	2,49	Tektonik	Qyt	
Vf28	1225	1187	1174	72	2,25	Litologi	Qyd, Qyt	
Vf29	1212	1250	1199	64	2,00	Tektonik	Qvu	
Vf30	1325	1312	1287	28	0,89	Tektonik	Qvu	
Vf31	1412	1412	1374	62	1,63	Tektonik	Qvu	
Vf32	1387	1362	1337	21	0,56	Tektonik	Qvu	
Vf33	1287	1312	1262	10	0,27	Tektonik	Qvu	
Vf34	1424	1449	1387	13	0,26	Tektonik	Qvu	
Vf35	1687	1687	1675	54	4,50	Litologi	Qyd	
Vf36	1599	1599	1587	43	3,58	Litologi	Qc	
Vf37	1487	1500	1467	5	0,19	Tektonik	Qvu	
Vf38	1287	1312	1262	10	0,27	Tektonik	Qvu	
Vf39	1237	1187	1162	188	3,76	Litologi	Qyd	
Vf40	1462	1400	1346	90	1,06	Tektonik	Qvu	
Rata- rata						1,42		

Tabel 5. Perhitungan Nilai Vf Blok Selatan

Tabel 5. Perhitungan Nilai Vf Blok Selatan										
Kode	Eld (m)	Erd (m)	Esc (m0	Vfw (m)	Vf	Faktor Dominan	Satuan Litologi			
Vf41	812	812	787	34	1,36	Tektonik	Qyu			
Vf42	912	924	874	21	0,48	Tektonik	Qyu			
Vf43	1024	1000	937	20	0,27	Tektonik	Qyu			
Vf44	1024	1024	987	15	0,41	Tektonik	Qyu			
Vf45	1075	1075	1049	40	1,54	Tektonik	Qyu			
Vf46	1124	1137	1062	10	0,15	Tektonik	Qyu			
Vf47	1149	1187	1124	37	0,84	Tektonik	Qyu			
Vf48	1100	1112	1087	17	0,89	Tektonik	Qyu			
Vf49	1237	1224	1199	56	1,78	Tektonik	Qyu			
Vf50	1074	1074	1049	18	0,72	Tektonik	Qyu			
Vf51	899	937	874	99	2,25	Tektonik	Qyu			
Vf52	999	999	974	68	2,72	Tektonik	Qyu			
Vf53	1024	1024	999	24	0,96	Tektonik	Qyu			
Vf54	1062	1062	1024	38	1,00	Tektonik	Qyu			
Vf55	1062	1074	1012	13	0,23	Tektonik	Qyu			
Vf56	1137	1124	1087	14	0,32	Tektonik	Qyu			
Vf57	1199	1237	1162	46	0,82	Tektonik	Qyu			
Vf58	1237	1249	1174	10	0,14	Tektonik	Qyu			
Vf59	1149	1187	1124	67	1,52	Tektonik	Qyu			
Vf60	1274	1300	1250	64	1,73	Tektonik	Qyu			
Vf61	862	862	849	7	0,54	Tektonik	Qyu			
Vf62	912	862	849	30	0,79	Tektonik	Qyu			
Vf63	837	824	799	89	2,83	Litologi	Qyd, Qyt			
Vf64	986	887	862	95	1,28	Tektonik	Qyu			
Vf65	962	987	912	44	0,70	Tektonik	Qyd, Qyt,Qyu			
Vf66	1062	1062	1024	52	1,37	Tektonik	Qyu			
Vf67	1100	1112	912	18	0,09	Tektonik	Qyu			
Vf68	1212	1187	1175	44	1,80	Tektonik	Qyu			
Vf69	987	999	937	25	0,45	Tektonik	Qyu			
Vf70	1250	1224	962	10	0,04	Tektonik	Qyu			
Vf71	812	812	787	34		Litologi	Qyd, Qyt			
Vf72	912	924	874	21	0,48	Tektonik	Qyd, Qyt			
Vf73	1024	1000	937	20	0,27	Tektonik	Qyd, Qyt,Qyu			
Vf74	1024	1024	987	15	0,41	Tektonik	Qyd, Qyt,Qyu			
Vf75	1075	1075	1049	40	1,54	Litologi	Qyd, Qyt			
Vf76	1124	1137	1062	10	0,15	Tektonik	Qyt,Qyu			
Vf77	1149	1187	1124	37		Tektonik	Qyu			
Vf78	1100	1112	1087	17	0,89	Tektonik	Qyu			
Vf79	1237	1224	1199	56	1,78	Tektonik	Qyu			
Vf80	1074	1074	1049	18	0,72	Tektonik	Qyu			
Rata- Rata						0,96				