Potensi Tumbuhan Genus Phyllanthus sebagai Imunomodulator dan Antiinflamasi
Abstrak
Sistem kekebalan adalah sistem pertahanan tubuh, yang bertujuan untuk mengenali dan merespons dari berbagai macam patogen atau cedera untuk melindungi tubuh. Sistem imun dapat mengalami ketidakseimbangan yang berdampak pada inflamasi yang tidak terkontrol dan menyebabkan berbagai penyakit. Dalam mengatasinya diperlukan imunomodulator dan antiinflamasi. Tumbuhan yang memiliki efek imunomodulator dan antiinflamasi yaitu tumbuhan meniran (genus Phyllanthus). Diketahui tumbuhan yang masih satu genus dengan meniran yang memiliki kemiripan kandungan kimia. Kesamaan kandungan kimia dari masing-masing tumbuhan genus Phyllanthus berkemungkinan memiliki efek dan potensi aktivitas yang sama. Tujuan dari artikel review ini adalah untuk menelusuri potensi aktivitas imunomodulator dan antiinflamasi tumbuhan genus Phyllanthus. Pencarian sumber dilakukan secara elektronik melalui situs PubMed. Berdasarkan hasil penelusuran didapatkan 43 artikel yang memenuhi kriteria penulisan. Senyawa tumbuhan genus Phyllanthus seperti: filtetralin, filantin, etil 8-hidroksi-8-metil-tridekanoat, 1,7,8-trihidroksi-2-naftaldehida, corilagin, geranin, tanin, kuersetin, rutin, dan asam galat berpotensi sebagai imunomodulator dengan cara mengatur respon imun humoral dan respon imun seluler. Senyawa tumbuhan genus Phyllanthus seperti: asam galat, filantin, hipofilantin, fisetin, katekin, corilagin, geranin, urolitin A, dan englerin A, telah terbukti berpotensi sebagai antiinflamasi dengan cara mengatur regulasi sitokin, enzim, dan protein inflamasi, serta menargetkan jalur persinyalan inflamasi.
Kata Kunci
Teks Lengkap:
PDFReferensi
Baratawidjaja KG, Rengganis I. Imunologi Dasar. XI. Jakarta: Badan Penerbit FKUI; 2016.
Buddiga P. Immune System Anatomy [Internet]. 2013. Available from: https://emedicine.medscape.com/article/1948753-overview#a1
Cota AM, Midwinter MJ. The immune system. Anaesthesia & Intensive Care Medicine [Internet]. 2015;16(7):353–5. Available from: https://www.sciencedirect.com/science/article/pii/S1472029915000892
Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget [Internet]. 2018;9(6):7204–18. Available from: www.impactjournals.com/oncotarget/
Ademokun AA, Dunn-Walters D. Immune Responses: Primary and Secondary [Internet]. eLS. 2010. (Major Reference Works). Available from: https://doi.org/10.1002/9780470015902.a0000947.pub2
Janeway CA, Travers P, Walport M, Shlomchik MJ. Immunobiology: The Immune System in Health and Disease [Internet]. 5th ed. New York: Garland Science; 2001. Available from: https://www.ncbi.nlm.nih.gov/books/NBK10757/
Catanzaro M, Corsini E, Rosini M, Racchi M, Lanni C. Immunomodulators Inspired by Nature: A Review on Curcumin and Echinacea. Molecules (Basel, Switzerland). 2018 Oct;23(11).
Bascones-Martinez A, Mattila R, Gomez-Font R, Meurman JH. Immunomodulatory drugs: oral and systemic adverse effects. Medicina oral, patologia oral y cirugia bucal [Internet]. 2014 Jan 1;19(1):e24–31. Available from: https://pubmed.ncbi.nlm.nih.gov/23986016
Yahfoufi N, Alsadi N, Jambi M, Matar C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients. 2018;10(11):1–23.
Mohamed SIA, Jantan I, Haque MA. Naturally occurring immunomodulators with antitumor activity: An insight on their mechanisms of action. International immunopharmacology. 2017 Sep;50:291–304.
Behl T, Kumar K, Brisc C, Rus M, Nistor-Cseppento DC, Bustea C, et al. Exploring the multifocal role of phytochemicals as immunomodulators. Biomedicine & Pharmacotherapy [Internet]. 2021;133:110959. Available from: https://www.sciencedirect.com/science/article/pii/S0753332220311513
Tjandrawinata RR, Susanto LW, Nofiarny D. The use of phyllanthus niruri L. as an immunomodulator for the treatment of infectious diseases in clinical settings. Asian Pacific Journal of Tropical Disease. 2017 Mar 1;7(3):132–40.
Hu Z, Lai Y, Zhang J, Wu Y, Luo Z, Yao G, et al. Phytochemical and chemotaxonomic studies on Phyllanthus urinaria. Biochemical Systematics and Ecology [Internet]. 2014;56:60–4. Available from: https://www.sciencedirect.com/science/article/pii/S0305197814001410
Guha R. On exploring structure-activity relationships. Methods in molecular biology (Clifton, NJ). 2013;993:81–94.
Jantan I, Haque MA, Ilangkovan M, Arshad L. An insight into the modulatory effects and mechanisms of action of phyllanthus species and their bioactive metabolites on the immune system. Frontiers in Pharmacology. 2019;10(JULY):1–19.
Medina KL. Chapter 4 - Overview of the immune system. In: Pittock SJ, Vincent ABT-H of CN, editors. Autoimmune Neurology [Internet]. Elsevier; 2016. p. 61–76. Available from: https://www.sciencedirect.com/science/article/pii/B9780444634320000049
Kellie S, Al-Mansour Z. Chapter Four - Overview of the Immune System. In: Skwarczynski M, Toth IBT-M and N in VD, editors. Micro and Nano Technologies [Internet]. William Andrew Publishing; 2017. p. 63–81. Available from: https://www.sciencedirect.com/science/article/pii/B978032339981400004X
Tasneem S, Liu B, Li B, Choudhary MI, Wang W. Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents. Pharmacological Research [Internet]. 2019;139:126–40. Available from: https://doi.org/10.1016/j.phrs.2018.11.001
Robb CT, Regan KH, Dorward DA, Rossi AG. Key mechanisms governing resolution of lung inflammation. Seminars in immunopathology. 2016 Jul;38(4):425–48.
Lopresti AL, Maker GL, Hood SD, Drummond PD. A review of peripheral biomarkers in major depression: the potential of inflammatory and oxidative stress biomarkers. Progress in neuro-psychopharmacology & biological psychiatry. 2014 Jan;48:102–11.
Nisar MF, He J, Ahmed A, Yang Y, Li M, Wan C. Chemical Components and Biological Activities of the Genus Phyllanthus: A Review of the Recent Literature. Molecules (Basel, Switzerland). 2018 Oct;23(10).
Alagan A, Jantan I, Kumolosasi E, Azmi N. Phyllanthus amarus protects against spatial memory impairment induced by lipopolysaccharide in mice. Bioinformation. 2019;15(8):535–41.
Ilangkovan M, Jantan I, Mesaik MA, Bukhari SNA. Immunosuppressive effects of the standardized extract of Phyllanthus amarus on cellular immune responses in Wistar-Kyoto rats. Drug Design, Development and Therapy. 2015;9:4917–30.
Nhu TQ, Bich Hang BT, Cornet V, Oger M, Bach LT, Anh Dao N Le, et al. Single or Combined Dietary Supply of Psidium guajava and Phyllanthus amarus Extracts Differentially Modulate Immune Responses and Liver Proteome in Striped Catfish (Pangasianodon hyphophthalmus). Frontiers in Immunology. 2020;11(May):1–22.
Mohamed SIA, Jantan I, Nafiah MA, Seyed MA, Chan KM. Dendritic cells pulsed with generated tumor cell lysate from Phyllanthus amarus Schum. & Thonn. induces anti-tumor immune response. BMC Complementary and Alternative Medicine. 2018;18(1):1–14.
Yuandani, Jantan I, Ilangkovan M, Husain K, Chan KM. Inhibitory effects of compounds from Phyllanthus amarus on nitric oxide production, lymphocyte proliferation, and cytokine release from phagocytes. Drug Design, Development and Therapy. 2016;10:1935–45.
Wu W, Li Y, Jiao Z, Zhang L, Wang X, Qin R. Phyllanthin and hypophyllanthin from Phyllanthus amarus ameliorates immune-inflammatory response in ovalbumin-induced asthma: role of IgE, Nrf2, iNOs, TNF-α, and IL’s. Immunopharmacology and immunotoxicology. 2019 Feb;41(1):55–67.
George A, Udani JK, Yusof A. Effects of Phyllanthus amarus PHYLLPROTMleaves on hangover symptoms: a randomized, double-blind, placebo-controlled crossover study. Pharmaceutical Biology [Internet]. 2019;57(1):145–53. Available from: https://doi.org/10.1080/13880209.2019.1585460
Harikrishnan H, Jantan I, Haque MA, Kumolosasi E. Anti-inflammatory effects of Phyllanthus amarus Schum. & Thonn. Through inhibition of NF-ΚB, MAPK, and PI3K-Akt signaling pathways in LPS-induced human macrophages. BMC Complementary and Alternative Medicine. 2018;18(1):1–13.
Alagan A, Jantan I, Kumolosasi E, Ogawa S, Abdullah MA, Azmi N. Protective effects of phyllanthus amarus against lipopolysaccharide-induced neuroinflammation and cognitive impairment in rats. Frontiers in Pharmacology. 2019;10(JUN):1–12.
Harikrishnan H, Jantan I, Haque MA, Kumolosasi E. Anti-Inflammatory Effects of Hypophyllanthin and Niranthin Through Downregulation of NF-κB/MAPKs/PI3K-Akt Signaling Pathways. Inflammation. 2018 Jun;41(3):984–95.
Harikrishnan H, Jantan I, Haque MA, Kumolosasi E. Phyllanthin from Phyllanthus amarus inhibits LPS-induced proinflammatory responses in U937 macrophages via downregulation of NF-κB/MAPK/PI3K-Akt signaling pathways. Phytotherapy research : PTR. 2018 Dec;32(12):2510–9.
Wang HMD, Fu L, Cheng CC, Gao R, Lin MY, Su HL, et al. Inhibition of LPS-induced oxidative damages and potential anti-inflammatory effects of Phyllanthus emblica extract via down-regulating NF-κB, COX-2, and iNOS in raw 264.7 cells. Antioxidants. 2019;8(8).
Singh MK, Yadav SS, Gupta V, Khattri S. Immunomodulatory role of Emblica officinalis in arsenic induced oxidative damage and apoptosis in thymocytes of mice. BMC Complementary and Alternative Medicine [Internet]. 2013;13(1):1. Available from: BMC Complementary and Alternative Medicine
Rosarin FS, Arulmozhi V, Nagarajan S, Mirunalini S. Antiproliferative effect of silver nanoparticles synthesized using amla on Hep2 cell line. Asian Pacific Journal of Tropical Medicine [Internet]. 2013;6(1):1–10. Available from: http://dx.doi.org/10.1016/S1995-7645(12)60193-X
Zeng Z, Lv W, Jing Y, Chen Z, Song L, Liu T, et al. Structural characterization and biological activities of a novel polysaccharide from Phyllanthus emblica. Drug discoveries & therapeutics. 2017;11(2):54–63.
Kaleem QM, Akhtar M, Awais MM, Saleem M, Zafar M, Iqbal Z, et al. Studies on Emblica officinalis derived tannins for their immunostimulatory and protective activities against coccidiosis in industrial broiler chickens. The Scientific World Journal. 2014;2014:10–2.
Sireeratawong S, Jaijoy K, Soonthornchareonnon N. Evaluation of anti-inflammatory and antinociceptive activity of Triphala recipe. African journal of traditional, complementary, and alternative medicines : AJTCAM / African Networks on Ethnomedicines. 2013;10(2):246–50.
Sripanidkulchai B, Junlatat J. Bioactivities of alcohol based extracts of Phyllanthus emblica branches: antioxidation, antimelanogenesis and anti-inflammation. Journal of natural medicines. 2014 Jul;68(3):615–22.
Yin K, Li X, Luo X, Sha Y, Gong P, Gu J, et al. Hepatoprotective Effect and Potential Mechanism of Aqueous Extract from Phyllanthus emblica on Carbon-Tetrachloride-Induced Liver Fibrosis in Rats. Evidence-based complementary and alternative medicine : eCAM. 2021;2021:5345821.
Golechha M, Bhatia J, Ojha S, Arya DS. Hydroalcoholic extract of Emblica officinalis protects against kainic acid-induced status epilepticus in rats: evidence for an antioxidant, anti-inflammatory, and neuroprotective intervention. Pharmaceutical biology. 2011 Nov;49(11):1128–36.
Wang CC, Yuan JR, Wang CF, Yang N, Chen J, Liu D, et al. Anti-inflammatory Effects of Phyllanthus emblica L on Benzopyrene-Induced Precancerous Lung Lesion by Regulating the IL-1β/miR-101/Lin28B Signaling Pathway. Integrative Cancer Therapies. 2017;16(4):505–15.
Muthuraman A, Sood S, Singla SK. The antiinflammatory potential of phenolic compounds from Emblica officinalis L. in rat. Inflammopharmacology. 2011;19(6):327–34.
Li W, Zhu H wei, Chen Y jiao, Xiao H, Ge Y zhong, Hu H e., et al. Bioactivity-guided isolation of anti-inflammatory components from Phyllanthus emblica. Food Science and Nutrition. 2020;8(6):2670–9.
Rao TP, Okamoto T, Akita N, Hayashi T, Kato-Yasuda N, Suzuki K. Amla (Emblica officinalis Gaertn.) extract inhibits lipopolysaccharide-induced procoagulant and pro-inflammatory factors in cultured vascular endothelial cells. The British journal of nutrition. 2013 Dec;110(12):2201–6.
Sato VH, Sungthong B, Rinthong PO, Nuamnaichati N, Mangmool S, Chewchida S, et al. Pharmacological effects of chatuphalatika in hyperuricemia of gout. Pharmaceutical Biology [Internet]. 2018;56(1):76–85. Available from: https://doi.org/10.1080/13880209.2017.1421235
Liu W, Ma H, DaSilva NA, Rose KN, Johnson SL, Zhang L, et al. Development of a neuroprotective potential algorithm for medicinal plants. Neurochemistry international. 2016 Nov;100:164–77.
Ferrante C, Chiavaroli A, Angelini P, Venanzoni R, Angeles Flores G, Brunetti L, et al. Phenolic Content and Antimicrobial and Anti-Inflammatory Effects of Solidago virga-aurea, Phyllanthus niruri, Epilobium angustifolium, Peumus boldus, and Ononis spinosa Extracts. Antibiotics (Basel, Switzerland). 2020 Nov;9(11).
Mostofa R, Ahmed S, Begum MM, Sohanur Rahman M, Begum T, Ahmed SU, et al. Evaluation of anti-inflammatory and gastric anti-ulcer activity of Phyllanthus niruri L. (Euphorbiaceae) leaves in experimental rats. BMC Complementary and Alternative Medicine. 2017;17(1):1–10.
Putri DU, Rintiswati N, Soesatyo MH, Haryana SM. Immune modulation properties of herbal plant leaves: Phyllanthus niruri aqueous extract on immune cells of tuberculosis patient - in vitro study. Natural product research. 2018 Feb;32(4):463–7.
Nworu CS, Akah PA, Okoye FBC, Esimone CO. Aqueous extract of Phyllanthus niruri (Euphorbiaceae) enhances the phenotypic and functional maturation of bone marrow-derived dendritic cells and their antigen-presentation function. Immunopharmacology and immunotoxicology. 2010 Sep;32(3):393–401.
Nworu CS, Akah PA, Okoye FBC, Proksch P, Esimone CO. The effects of Phyllanthus niruri aqueous extract on the activation of murine lymphocytes and bone marrow-derived macrophages. Immunological investigations. 2010 Jan;39(3):245–67.
Muthulakshmi M, Subramani PA, Michael RD. Immunostimulatory effect of the aqueous leaf extract of Phyllanthus niruri on the specific and nonspecific immune responses of Oreochromis mossambicus Peters. Iranian Journal of Veterinary Research. 2016;17(3):200–2.
Boeira VT, Leite CE, Santos AAJ, Edelweiss MI, Calixto JB, Campos MM, et al. Effects of the hydroalcoholic extract of Phyllanthus niruri and its isolated compounds on cyclophosphamide-induced hemorrhagic cystitis in mouse. Naunyn-Schmiedeberg’s archives of pharmacology. 2011 Sep;384(3):265–75.
de Melo MN, Soares LAL, Porto CR da C, de Araújo AA, Almeida M das G, de Souza TP, et al. Spray-dried extract of Phyllanthus niruri L. reduces mucosal damage in rats with intestinal inflammation. The Journal of pharmacy and pharmacology. 2015 Aug;67(8):1107–18.
Bhattacharyya S, Ghosh S, Sil PC. Amelioration of aspirin induced oxidative impairment and apoptotic cell death by a novel antioxidant protein molecule isolated from the herb Phyllanthus niruri. PLoS ONE. 2014;9(2).
Jia L, Jin H, Zhou J, Chen L, Lu Y, Ming Y, et al. A potential anti-tumor herbal medicine, Corilagin, inhibits ovarian cancer cell growth through blocking the TGF-β signaling pathways. BMC Complementary and Alternative Medicine [Internet]. 2013;13(1):1. Available from: BMC Complementary and Alternative Medicine
Geethangili M, Ding ST. A review of the phytochemistry and pharmacology of Phyllanthus urinaria L. Frontiers in Pharmacology. 2018;9(OCT):1–20.
Liu FC, Chaudry IH, Yu HP. Hepatoprotective effects of corilagin following hemorrhagic shock are through Akt-dependent pathway. Shock. 2017;47(3):346–51.
Tseng HH, Chen PN, Kuo WH, Wang JW, Chu SC, Hsieh YS. Antimetastatic potentials of phyllanthus urinaria L on A549 and Lewis lung carcinoma cells via repression of matrix-degrading proteases. Integrative Cancer Therapies. 2012;11(3):267–78.
Liu FC, Yu HP, Chou AH, Lee HC, Liao CC. Corilagin reduces acetaminophen-induced hepatotoxicity through MAPK and NF-κB signaling pathway in a mouse model. American Journal of Translational Research. 2020;12(9):5597–607.
Unander DW, Webster GL, Blumberg BS. Usage and bioassays in Phyllanthus (Euphorbiaceae): a compilation. III. The subgenera Eriococcus, Conami, Gomphidium, Botryanthus, Xylophylla and Phyllanthodendron, and a complete list of the species cited in the three-part series. Journal of ethnopharmacology. 1992 Apr;36(2):103–12.
Breitbach UB, Niehues M, Lopes NP, Faria JEQ, Brandão MGL. Amazonian Brazilian medicinal plants described by C.F.P. von Martius in the 19th century. Journal of ethnopharmacology. 2013 May;147(1):180–9.
Borges L da C, Negrão-Neto R, Pamplona S, Fernandes L, Barros M, Fontes-Júnior E, et al. Anti-inflammatory and antinociceptive studies of hydroalcoholic extract from the leaves of phyllanthus brasiliensis (Aubl.) Poir. and isolation of 5-O-β-D-Glucopyranosyljusticidin B and six other lignans. Molecules. 2018;23(4):1–15.
WINTER CA, RISLEY EA, NUSS GW. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine (New York, NY). 1962 Dec;111:544–7.
Rao YK, Fang S-H, Tzeng Y-M. Anti-inflammatory activities of constituents isolated from Phyllanthus polyphyllus. Journal of ethnopharmacology. 2006 Jan;103(2):181–6.
Ezeigbo O, Nwachukwu I, Ike-Amadi C, Suleiman J. Evaluation of the Phytochemical, Proximate and Mineral Constituents of Breynia nivosa Leaf. International Journal of Biochemistry Research & Review. 2017;20(2):1–8.
Johnson TO, Gurumtet I, Ugwu PU, Nkom KM, Okafor DC, Oleru D, et al. In vitro biochemical evaluation of the antiplasmodial activities of various fractions obtained from Phyllanthus nivosus leaf extract. 2017;(March 2019):1–4.
Johnson TO, Odoh KD, Nwonuma CO, Akinsanmi AO, Adegboyega AE. Biochemical evaluation and molecular docking assessment of the anti-inflammatory potential of Phyllanthus nivosus leaf against ulcerative colitis. Heliyon [Internet]. 2020;6(5):e03893. Available from: https://doi.org/10.1016/j.heliyon.2020.e03893
Francioso A, Franke K, Villani C, Mosca L, D’Erme M, Frischbutter S, et al. Insights into the Phytochemistry of the Cuban Endemic Medicinal Plant Phyllanthus orbicularis: Fideloside, a Novel Bioactive 8-C-glycosyl 2,3-Dihydroflavonol. Molecules. 2019;24(15).
Gaitén YIG, Martínez MM, Alarcón AB, Vázquez MM, Hernández JLF, Roche LD, et al. Anti-inflammatory and Antioxidant Activity of a Methanolic Extract of Phyllanthus orbicularis and its Derived Flavonols. Journal of Essential Oil Research [Internet]. 2011 Sep 1;23(5):50–3. Available from: https://doi.org/10.1080/10412905.2011.9700482
Alvarez AL, Dalton KP, Nicieza I, Diñeiro Y, Picinelli A, Melón S, et al. Bioactivity-guided fractionation of Phyllanthus orbicularis and identification of the principal anti HSV-2 compounds. Phytotherapy research : PTR. 2012 Oct;26(10):1513–20.
Agyare C, Asase A, Lechtenberg M, Niehues M, Deters A, Hensel A. An ethnopharmacological survey and in vitro confirmation of ethnopharmacological use of medicinal plants used for wound healing in Bosomtwi-Atwima-Kwanwoma area, Ghana. Journal of ethnopharmacology. 2009 Sep;125(3):393–403.
Boakye YD, Groyer L, Heiss EH. An increased autophagic flux contributes to the anti-inflammatory potential of urolithin A in macrophages. Biochimica et Biophysica Acta - General Subjects. 2018;1862(1):61–70.
Ogunwande IA, Avoseh ON, Igile DO, Lawal OA, Ascrizzi R, Guido F. Chemical Constituents, Anti-nociceptive and Anti-inflammatory Activities of Essential Oil of Phyllanthus muellerianus. Natural Product Communications. 2019;14(5).
Boakye YD, Agyare C, Abotsi WKM, Ayande PG, Ossei PPS. Anti-inflammatory activity of aqueous leaf extract of Phyllanthus muellerianus (Kuntze) Exell. and its major constituent, geraniin. Journal of ethnopharmacology. 2016 Jul;187:17–27.
Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004 Aug;21(2):137–48.
Masuda Y, Murata Y, Hayashi M, Nanba H. Inhibitory effect of MD-Fraction on tumor metastasis: involvement of NK cell activation and suppression of intercellular adhesion molecule (ICAM)-1 expression in lung vascular endothelial cells. Biological & pharmaceutical bulletin. 2008 Jun;31(6):1104–8.
Ren Y, Yuan C, Deng Y, Kanagasabai R, Ninh TN, Tu VT, et al. Cytotoxic and natural killer cell stimulatory constituents of Phyllanthus songboiensis. Phytochemistry. 2015 Mar;111:132–40.
Ratnayake R, Covell D, Ransom TT, Gustafson KR, Beutler JA. Englerin A, a selective inhibitor of renal cancer cell growth, from Phyllanthus engleri. Organic letters. 2009 Jan;11(1):57–60.
Morris CJ. Carrageenan-induced paw edema in the rat and mouse. Methods in molecular biology (Clifton, NJ). 2003;225:115–21.
de Sousa Valente J, Alawi KM, Bharde S, Zarban AA, Kodji X, Thapa D, et al. (-)-Englerin-a has analgesic and anti-inflammatory effects independent of trpc4 and 5. International Journal of Molecular Sciences. 2021;22(12).
Chung CY, Liu CH, Wang GH, Jassey A, Li CL, Chen L, et al. (4R,6S)-2-Dihydromenisdaurilide is a Butenolide that Efficiently Inhibits Hepatitis C Virus Entry. Scientific Reports [Internet]. 2016;6(March):1–11. Available from: http://dx.doi.org/10.1038/srep29969
Srilatha K, Reddy KP. Sciatic Nerve Structural and Functional Recovery with Extract of Phyllanthus amarus and Esculetin in STZ-Induced Hyperglycemic Rats. Annals of Neurosciences. 2019;26(3–4):17–29.
Christa SS, Swetha A, Christina E, Ganesh RN, Viswanathan P. Modulatory effect of chandraprabha vati on antimicrobial peptides and inflammatory markers in kidneys of mice with urinary tract infection. Iranian Journal of Kidney Diseases. 2013;7(5):390–8.
DOI: https://doi.org/10.24198/ijbp.v1i2.37027
DOI (PDF): https://doi.org/10.24198/ijbp.v1i2.37027.g16944
Refbacks
- Saat ini tidak ada refbacks.
##submission.license.cc.by-nc4.footer##
IJBP by Universitas Padjadjaran is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
