Terapi Dislipidemia: Tanaman Penghambat HMG-CoA Reduktase

Wanda Oktavelia, Sri Agung Fitri Kusuma

Abstrak


HMG-CoA reduktase merupakan enzim yang dapat mengkatalisis HMG-CoA menjadi mevalonate yang diperlukan dalam biosintesis kolesterol. Dengan demikian, penghambatan terhadap enzim HMG-CoA reduktase merupakan mekanisme target obat yang efektif untuk mengatasi dislipidemia. Selama ini, pengobatan dislipidemia dilakukan dengan pemberian obat golongan statin secara rutin. Namun, obat golongan ini diketahui memiliki efek samping yang merugikan pada pemakaian jangka panjang seperti nyeri otot dan bahkan dapat mencetuskan terjadinya penyakit diabetes mellitus dan kondisi hepatotoksik. Oleh karena itu, diperlukan terapi komplemen menggunakan herbal yang dinilai penggunaannya lebih aman. Penulisan artikel ini bertujuan untuk menelusuri berbagai jenis tanaman yang memiliki kemampuan menghambat HMG-CoA reduktase yang serupa dengan kemampuan statin. Dari hasil penelusuran diperoleh berbagai tanaman yang memiliki aktivitas sebagai penghambat HMG-CoA reduktase yang dapat digunakan sebagai terapi komplemen dislipidemia dengan rentang penghambatan sebesar 55-98,5% melalui uji in vivo, in vitro, dan in silico. Di antara tanaman tersebut, yang paling efektif adalah Ficus virens W.T.Aiton dengan penghambatan sebesar 98,5%. Jadi, tanaman ini dapat berpotensi untuk dikembangkan lebih lanjut sebagai antidislipidemia alami.


Kata Kunci


dislipidemia, HMG-CoA reduktase, komplemen, tanaman, Ficus virens

Teks Lengkap:

PDF

Referensi


Morika. Pengaruh Pemberian Jus Tomat Terhadap Kadar Kolesterol. J Kesehat Saintika Meditory J Kesehat Saintika Meditory. 2020;2(2):113–20.

Permatasari SNI, Samsuri S, Kendran AAS. Theincrease Ofblood Cholesterol Levels in White Rats Supplemented Withcassava Yeast. Indones Med Veterinus. 2021;10(1):21–9.

Listiyana AD, Mardiana M, Prameswari GN. Obesitas sentral dan kadar kolesterol darah total. J Kesehat Masy. 2013;9(1):37–43.

Zhao W, An Z, Hong Y, Zhou G, Guo J, Zhang Y, et al. Low total cholesterol level is the independent predictor of poor outcomes in patients with acute ischemic stroke: A hospital-based prospective study. BMC Neurol. 2016;16(1):1–8.

Perrone MA, Feola A, Pieri M, Donatucci B, Salimei C, Lombardo M, et al. The effects of reduced physical activity on the lipid profile in patients with high cardiovascular risk during covid-19 lockdown. Int J Environ Res Public Health. 2021;18(16).

Gidding SS, Allen NB. Cholesterol and Atherosclerotic Cardiovascular Disease: A Lifelong Problem. J Am Heart Assoc. 2019;8(11):1–3.

Hedayatnia M, Asadi Z, Zare-Feyzabadi R, Yaghooti-Khorasani M, Ghazizadeh H, Ghaffarian-Zirak R, et al. Dyslipidemia and cardiovascular disease risk among the MASHAD study population. Lipids Health Dis. 2020 Mar 16;19(1):1–11.

Subandrate, Susilawati, Safyudin. Mentorship of Prevention and Treatment Effort of Hypercholesterolemia in Students. J Arsip Pengabdi Masy. 2019;1(1):1–7.

Medyati N, Ridwan A, Russeng S, Stang. Karakteristik Dan Prevalensi Risiko Penyakit Kardiovaskular Pada Tukang Masak Warung Makan Di Wilayah Kerja Puskesmas Tamalanrea. J Kesehat. 2018;11(1):30–8.

Dipiro JT, Yee GC, Posey M, Haines ST, Nolin TD, Ellingrod V. Pharmacotherapy A Pathophysiology Approach. Eleventh E. United State: McGraw Hill; 2020.

Pappan N, Rehman A. Dyslipidemia. In: StatPearl Publishing. Treasure Island: StatPearl Publishing; 2021.

Bolli P. Treatment of dyslipidemia: The problem of reaching the goal. Atherosclerosis. 2014;236(1):142–3.

Albarrati AM, Alghamdi MSM, Nazer RI, Alkorashy MM, Alshowier N, Gale N. Effectiveness of low to moderate physical exercise training on the level of low-density lipoproteins: A systematic review. Biomed Res Int. 2018;2018.

Cruz PMR, Mo H, McConathy WJ, Sabnis N, Lacko AG. The role of cholesterol metabolism and cholesterol transport in carcinogenesis: A review of scientific findings, relevant to future cancer therapeutics. Front Pharmacol. 2013;4:1–7.

Baskaran G, Salvamani S, Ahmad SA, Shaharuddin NA, Pattiram PD, Shukor MY. HMG-CoA reductase inhibitory activity and phytocomponent investigation of Basella alba leaf extract as a treatment for hypercholesterolemia. Drug Des Devel Ther. 2015;9:509–17.

Bonfim MR, Oliveira ASB, Do Amaral SL, Monteiro HL. Treatment of dyslipidemia with statins and physical exercises: Recent findings of skeletal muscle responses. Arq Bras Cardiol. 2015;104(4):324–31.

PERKI. Panduan Tata Laksana Dislipidemia. Perhimpunan Dokter Spesialis Kardiovaskular Indonesia. 2017.

Dewi IP, Merry MS. Peranan Obat Golongan Statin. Berk Ilm Kedokt Duta Wacana. 2017;02(3):3–4.

Rensburg WJJ Van. Lifestyle Change Alone Sufficient to Lower Cholesterol in Male Patient With Moderately Elevated Cholesterol: A Case Report. Am J Lifestyle Med. 2019;13(2):148–55.

Oliveira EF, Santos-Martins D, Ribeiro AM, Brás NF, Cerqueira NS, Sousa SF, et al. HMG-CoA Reductase inhibitors: an updated review of patents of novel compounds and formulations (2011-2015). Expert Opin Ther Pat. 2016;26(11):1257–72.

Toth PP, Banach M. Statins: Then and Now. Methodist Debakey Cardiovasc J. 2019;15(1):23–31.

Ward NC, Watts GF, Eckel RH. Statin Toxicity: Mechanistic Insights and Clinical Implications. Circ Res. 2019;124(2):328–50.

Bansal AB, Cassagnol M. HMG-CoA Reductase Inhibitors [Internet]. StatPearl Publishing. 2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK542212/

Charan J, Riyad P, Ram H, Purohit A, Ambwani S, Kashyap P, et al. Ameliorations in dyslipidemia and atherosclerotic plaque by the inhibition of HMG-CoA reductase and antioxidant potential of phytoconstituents of an aqueous seed extract of Acacia senegal (L.) Willd in rabbits. PLoS One. 2022;17(3 March):1–22.

Salvamani S, Gunasekaran B, Shukor MY, Shaharuddin NA, Sabullah MK, Ahmad SA. Anti-HMG-CoA reductase, antioxidant, and anti-inflammatory activities of amaranthus viridis leaf extract as a potential treatment for hypercholesterolemia. Evidence-based Complement Altern Med. 2016;2016.

Hartanti L, Yonas SMK, Mustamu JJ, Wijaya S, Setiawan HK, Soegianto L. Influence of extraction methods of bay leaves (Syzygium polyanthum) on antioxidant and HMG-CoA Reductase inhibitory activity. Heliyon. 2019;5(4):e01485.

Rachmawati H, Soraya IS, Kurniati NF, Rahma A. In vitro study on antihypertensive and antihypercholesterolemic effects of a curcumin nanoemulsion. Sci Pharm. 2016;84(1):131–40.

Yunarto N, Sulistyowati I, Finolawati A, Elya B, Saurisari R. HMG-CoA Reductase Inhibitory Activity of Extract and Catechin Isolate from Uncaria Gambir as a Treatment for Hypercholesterolemia. J Southwest Jiaotong Univ. 2021;56(6):490–9.

Rosario Trijuliamos Manalu, Imelia Omega Meheda, Cintya Octaviani. Inhibition of HMG-CoA Reductase Activity from Active Compounds of Ginger (Zingiber officinale): In-Silico Study. J Farm Etam. 2021;1(1):32–8.

Baskaran G, Salvamani S, Azlan A, Ahmad SA, Yeap SK, Shukor MY. Hypocholesterolemic and Antiatherosclerotic Potential of Basella alba Leaf Extract in Hypercholesterolemia-Induced Rabbits. Evidence-based Complement Altern Med. 2015;2015.

Iqbal D, Khan MS, Khan MS, Ahmad S, Hussain MS, Ali M. Bioactivity guided fractionation and hypolipidemic property of a novel HMG-CoA reductase inhibitor from Ficus virens Ait. Lipids Health Dis. 2015;14(1):1–15.

Megawati, Elya B, Puspitasari N. Inhibition of 3-hydroxy-3-methylglutaryl-coenzyme a reductase activity by extracts of Garcinia Xanthochymus mesocarp and total flavonoid assay quantification of the most active extract. Int J Appl Pharm. 2018;10(Special Issue 1):264–8.

Hafizh KA, Nuraini P, Azminah, Arry Y, Yuditya A, Mun’im A. HMG-CoA Reductase Inhibitory Activity of Gnetum gnemon Seed Extract and Identification of Potential Inhibitors for Lowering Cholesterol Level. J Young Pharm. 2017;9(4):559–65.

Hidayat M, Prahastuti S, Delima ER, Setiawati L, Soemardji AA. High Doses of Soybean, Jati Belanda and Their Combination Extracts Have No Acute Toxic Effects. Heal Sci J Indones. 2017;8(2):124–32.

Moreno CB, Lengua MD, Amador AA. In vitro antioxidant and inhibitory activity of enzyme HMG-CoA reductase from the methanol extract of Jatropha Gossypifolia. 2020;9(1):4–14.

Prasongsub W, Pimsan N, Buranapattarachote C, Punturee K. Anti-HMG-CoA reductase and antioxidant activities of Sacha inchi (Plukenetia volubilis L.) nutshell extract. J Assoc Med Sci. 2021;54(3):18–26.

Ram H, Jaipal N, Charan J, Kashyap P, Kumar S, Tripathi R, et al. Phytoconstituents of an ethanolic pod extract of Prosopis cineraria triggers the inhibition of HMG-CoA reductase and the regression of atherosclerotic plaque in hypercholesterolemic rabbits. Lipids Health Dis. 2020;19(6):1–11.

Hetta MH, Moawad AS, Hamed MAA, Sabri AI. In-vitro and In-vivo hypolipidemic activity of spinach roots and flowers. Iran J Pharm Res. 2017;16(4):1509–19.

Arantes AA, Falé PL, Costa LCB, Pacheco R, Ascensão L, Serralheiro ML. Inhibition of HMG-CoA reductase activity and cholesterol permeation through Caco-2 cells by caffeoylquinic acids from Vernonia condensata leaves. Rev Bras Farmacogn. 2016;26(6):738–43.

GBIF. Acacia senegal (L.) Willd. [Internet]. 2022 [cited 2022 Jun 12]. Available from: https://www.gbif.org/species/2978697

GBIF. Amaranthus viridis L. 2022 [cited 2022 Jun 12]. Available from: https://www.gbif.org/species/5384334

Salvamani S, Gunasekaran B, Shukor MY, Abu Bakar MZ, Ahmad SA. Phytochemical investigation, hypocholesterolemic and anti-atherosclerotic effects of: Amaranthus viridis leaf extract in hypercholesterolemia-induced rabbits. R Soc Chem Adv. 2016;6(39):32685–96.

GBIF. Basella alba L. [cited 2022 Jun 12]. Available from: https://www.gbif.org/species/3083504

GBIF. Ficus virens W.T.Aiton. 2022 [cited 2022 Jun 12]. Available from: https://www.gbif.org/species/8292438

GBIF. Garcinia xanthochymus Hook.fil. ex J.Anderson. 2022 [cited 2022 Jun 12]. Available from: https://www.gbif.org/species/8096611

GBIF. Gnetum gnemon L.. 2022 [cited 2022 Jun 12]. Available from: https://www.gbif.org/species/2653133

Sagith DV, Ilmiawati C, Katar Y. Pengaruh Pemberian Ekstrak Biji Melinjo (Gnetum gnemon) Terhadap Kadar Kolesterol LDL Pada Tikus Galur Wistar (Rattus norvegicus) Model Hiperkolesterolemia. J Kesehat Andalas. 2018;7(4):486.

Shahi MM, Haidari F, Shiri MR. Comparison of effect of resveratrol and vanadium on diabetes related dyslipidemia and hyperglycemia in streptozotocin induced diabetic rats. Adv Pharm Bull. 2011;1(2):81–6.

GBIF. Guazuma ulmifolia Lam. 2022 [cited 2022 Jun 12]. Available from: https://www.gbif.org/species/3152195

Hidajat M, Aman IGM, Sukoco H, Siswanto FM. Ekstrak Etanol Daun Jati Belanda (Guazuma ulmifolia Lamk) Memperbaiki Profil Lipid Tikus (Rattus norvegicus) Wistar Jantan Dislipidemia. J Sains dan Teknol Peternak. 2020;1(1):25–30.

Amani R. Flavonoid-rich beverage effects on lipid profile and blood pressure in diabetic patients. World J Diabetes. 2014;5(6):962.

Mandić L, Sadžak A, Strasser V, Baranović G, Jurašin DD, Sikirić MD, et al. Enhanced protection of biological membranes during lipid peroxidation: Study of the interactions between flavonoid loaded mesoporous silica nanoparticles and model cell membranes. Int J Mol Sci. 2019;20(11).

GBIF. Jatropha gossypiifolia L. 2022 [cited 2022 Jun 12]. Available from: https://www.gbif.org/species/3072900

Kumar Issac P, Jayaseelan A, Chandrakumar S, Jaiganesh S, Snehaa Chandrakumar S, Sundaresan S. Tannins of Jatropha Gossypifolia Exert Anti-Hyperlipidemic Effect in Streptozotocin-Nicotinamide Induced Diabetic Rats. Eur J Biomed Pharm Sci. 2018;5(2):607–14.

GBIF. Plukenetia volubilis L. 2022 [cited 2022 Jun 12]. Available from: https://www.gbif.org/species/3070717

GBIF. Prosopis cineraria (L.) Druce. 2022 [cited 2022 Jun 12]. Available from: https://www.gbif.org/species/5358521

GBIF. Spinacia oleracea L. 2022 [cited 2022 Jun 12]. Available from: https://www.gbif.org/species/3083647

GBIF. Syzygium polyanthum (Wight) Walp. 2022 [cited 2022 Jun 12]. Available from: https://www.gbif.org/species/3182288

Irmadoly N, Wirajaya F, Chalista S, Fam F, Se H. Uji Aktivitas Antidislipidemia In Vivo Fraksi Ekstrak Daun Salam (Eugenia polyantha) pada Tikus Galur Wistar yang diinduksi Diet Tinggi Lemak. J Kedokt dan Kesehat. 2014;1(1):21–4.

GBIF. Uncaria gambir (W.Hunter) Roxb. 2022 [cited 2022 Jun 12]. Available from: https://www.gbif.org/species/5338190

Yunarto N, Elya B, Konadi L. Potensi Fraksi Etil Asetat Ekstrak Daun Gambir (Uncaria gambir Roxb.) sebagai Antihiperlipidemia. J Kefarmasian Indones. 2015;5(1):1–10.

Alioes Y, Sukma RR, Sekar SL. Effect of Gambir Catechin Isolate (Uncaria Gambir Roxb.) Against Rat Triacylglycerol Level (Rattus novergicus). IOP Conf Ser Earth Environ Sci. 2019;217(1).

GBIF. Vernonia condensata Baker, 1875. 2022 [cited 2022 Jun 12]. Available from: https://www.gbif.org/species/103759469

GBIF. Zingiber officinale var. rubrum Theilade. 2022 [cited 2022 Jun 12]. Available from: https://www.gbif.org/species/2757288




DOI: https://doi.org/10.24198/ijbp.v2i3.41376

DOI (PDF): https://doi.org/10.24198/ijbp.v2i3.41376.g19006

Refbacks

  • Saat ini tidak ada refbacks.


##submission.license.cc.by-nc4.footer##

IJBP by Universitas Padjadjaran is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License