Penambatan Molekuler Konstituen Kimia Tumbuhan Bawang Dayak (Eleutherine palmifolia (L.) Merr) terhadap Reseptor VHR sebagai Kandidat Obat Antikanker Serviks

Annisa Dyah Pitaloka, Chaca Yasinta Nurhijriah, Kalina Kalina, Hanif Azhar Musyaffa, Annisa Maulida Azzahra

Abstrak


Bawang Dayak (Eleutherine palmifolia (L.) Merr) merupakan salah satu tumbuhan khas yang mengandung senyawa flavonoid yang telah dimanfaatkan oleh masyarakat Dayak di Kalimantan Tengah sebagai obat Antikanker. Kanker Serviks adalah tumor ganas yang berasal dari sel epitel serviks. Tujuan dari penelitian ini adalah untuk menganalisis berbagai kegunaan kandungan metabolit sekunder dan mekanisme kerja dari bawang dayak sebagai antikanker secara in silico melalui metode penambatan molekul pada reseptor Vaccinia H1-related phosphatase (VHR)  menggunakan program AutoDock Tools. Validasi metode telah dilakukan dengan nilai Root Mean Square Deviation (RMSD) yang diperoleh sebesar 0,57Å. Pengujian in silico terhadap senyawa yang terkandung dalam bawang dayak (Eleutherine palmifolia (L.) Merr) didapatkan hasil bahwa  senyawa Eleuthraquinone A memiliki nilai ∆G yang paling rendah dibandingkan senyawa lain dan senyawa senyawa pembanding 5-Fluorourasil, dengan nilai energi ikatan sebesar -9,41 kkal/mol dengan ikatan hidrogen pada residu asam amino GLU122, LEU124, dan LYS61. Senyawa Eleuthraquinone A memenuhi semua aturan Lipinski, mempunyai absorpsi dan distribusi yang baik, dan bersifat mutagen tetapi tidak karsinogen berdasarkan hasil prediksi ADMET.


Kata Kunci


Antikanker; Bawang Dayak; Kanker Serviks; Penambatan Molekul, VHR

Teks Lengkap:

PDF

Referensi


WHO. Cervical Cancer. [diunduh 1 April 2021]. Tersedia dari: https://www.who.int/health-topics/cervical-cancer.

P2PTM. Buku Pedoman Manajemen Penyakit Tidak Menular. Jakarta: Kementerian Kesehatan Republik Indonesia Direktorat Pencegahan dan Pengendalian Penyakit Tidak Menular; 2019.

Tonks NK. Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol. 2006;7(11):833–46.

Bollu LR, Mazumdar A, Savage MI, Brown PH. Molecular Pathways: Targeting Protein Tyrosine Phosphatases in Cancer. Clin Cancer Res. 2017;23(9):2136–42.

Hendriks WJAJ, Pulido R. Protein tyrosine phosphatase variants in human hereditary disorders and disease susceptibilities. Biochim Biophys Acta. 2013;1832(10):1673–96.

Wu S, Vossius S, Rahmouni S, Miletic A V, Vang T, Vazquez-Rodriguez J, et al. Multidentate small-molecule inhibitors of vaccinia H1-related (VHR) phosphatase decrease proliferation of cervix cancer cells. J Med Chem. 2009;52(21):6716–23.

Henkens R, Delvenne P, Arafa M, Moutschen M, Zeddou M, Tautz L, et al. Cervix carcinoma is associated with an up-regulation and nuclear localization of the dual-specificity protein phosphatase VHR. BMC Cancer. 2008;8:147.

Sun YS, Zhao Z, Yang ZN, Xu F, Lu HJ, Zhu ZY, et al. Risk Factors and Preventions of Breast Cancer. Int J Biol Sci. 2017;13(11):1387–97.

Mutiah R. Kajian Efek Ekstrak Umbi Bawang Dayak (Eleutherine palmifolia (L.) Merr.). J Islam Pharm. 2020;5(2):14–26.

Puspadewi R, Putranti A, M R. Khasiat Umbi Bawang Dayak (Eleutherine palmifolia (L.) Merr.) sebagai Herbal Antimikroba Kulit. Kartika J Ilm Farm. 2013;1(1):31–7.

Hidayah A, Kiki M, Leni P. Uji Aktivitas Antioksidan Umbi Bawang Dayak (Eleutherine bulbosa Merr.). In: Prosiding Penelitian SPeSIA Unisba. Bandung: Universitas Islam Bandung; 2015.

Narko T, Benny P, Riska P, Dang S, Faridhatul K. Molecular Docking Study of Bulb Of Bawang Dayak (Eleutherine palmifolia (L.) Merr) Compound as Anti Servical Cancer. J Ilm Farm Bahari. 2017;8(2):1–14.

Muti’ah R, Trian S, Risma A, Erna S. Compound Identification and Anticancer Activity of Ethyl Acetate Fraction from Bawang Sabrang (Eleutherine palmifolia (L.) Merr.) on HeLa Cervical Cancer Cell Line. Indones J Cancer Chemoprevention. 2019;10(3):131–9.

Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des. 2011;7(2):146–57.

Pinzi L, Rastelli G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int J Mol Sci [Internet]. 2019 Sep 4;20(18):4331.

Kontoyianni M, McClellan LM, Sokol GS. Evaluation of docking performance: comparative data on docking algorithms. J Med Chem. 2004;47(3):558–65.

Du X, Li Y, Xia YL, Ai SM, Liang J, Sang P, et al. Insights into Protein-Ligand Interactions: Mechanisms, Models, and Methods. Int J Mol Sci. 2016;17(2).

Couñago RM, Allerston CK, Savitsky P, Azevedo H, Godoi PH, Wells CI, et al. Structural characterization of human Vaccinia-Related Kinases (VRK) bound to small-molecule inhibitors identifies different P-loop conformations. Sci Rep. 2017;7(1):7501.

Lu HM, Yin DC, Ye YJ, Luo HM, Geng LQ, Li HS, et al. Correlation between protein sequence similarity and x-ray diffraction quality in the protein data bank. Protein Pept Lett. 2009;16(1):50–5.

Zhao J, Cao Y, Zhang L. Exploring the computational methods for protein-ligand binding site prediction. Comput Struct Biotechnol J. 2020;18:417–26.

Arba M, Arfan, Trisnawati A, Kurniawati D. Pemodelan Farmakofor untuk Identifikasi Inhibitor Heat Shock Proteins-90 (HSP-90). J Farm Galen (Galenika J Pharmacy). 2020;6(2).

Prasetiawati R, Suherman M, Permana B, Rahmawati R. Molecular Docking Study of Anthocyanidin Compounds Against Epidermal Growth Factor Receptor (EGFR) as Anti-Lung Cancer. Indones J Pharm Sci Technol. 2021 Feb 12;8(1):8.

Ravindranath PA, Forli S, Goodsell DS, Olson AJ, Sanner MF. AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility. Fetrow JS, editor. PLOS Comput Biol. 2015 Dec 2;11(12):e1004586.

Musoev A, Numonov S, You Z, Gao H. Discovery of Novel DPP-IV Inhibitors as Potential Candidates for the Treatment of Type 2 Diabetes mellitus Predicted by 3D QSAR Pharmacophore Models, Molecular Docking and de novo Evolution. Molecules. 2019;24(16).

Ferwandi S, Gunawan R, Astuti W. Studi Docking Molekular Senyawa Asam Sinamat dan Derivatnya Sebagai Inhibitor Protein 1j4x pada Sel Kanker Serviks. J Kim Mulawarman. 2017;14(2):84–90.

Wang XY, Wang QH, He Y, Wang H. Advances in studies on chemical constituents and pharmacological activities of Eleutherine palmifolia. Asia-Pacific Tradit Med. 2015;11(2):39–42.

Kamarudin AA, Sayuti NH, Saad N, Razak NAA, Esa NM. Eleutherine bulbosa (Mill.) Urb. Bulb: Review of the Pharmacological Activities and Its Prospects for Application. Int J Mol Sci. 2021;22(13).

Pereyra CE, Dantas RF, Ferreira SB, Gomes LP, Silva-Jr FP. The diverse mechanisms and anticancer potential of naphthoquinones. Cancer Cell Int. 2019;19(1):207.

Wellington KW. Understanding cancer and the anticancer activities of naphthoquinones – a review. RSC Adv. 2015;5(26):20309–38.

Rahman MM, Islam MR, Akash S, Shohag S, Ahmed L, Supti FA, et al. Naphthoquinones and derivatives as potential anticancer agents: An updated review. Chem Biol Interact. 2022;368:110198.

Annisa R, Hendradi E, Yuwono M. Analysis of 1,4 naphthoquinone in the Indonesian medical plant from extract Eleutherine palmifolia (L.) Merr by UHPLC. IOP Conf Ser Earth Environ Sci. 2020;456(1):012020.

Heald R, Bowman K, Bryan M, Burdick D, Chan B, Chan E. Correction to Noncovalent Mutant Selective Epidermal Growth Factor Receptor Inhibitors: A Lead Optimization Case Study. J Med Chem. 2016;59(6):2848–58.

Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004;1(4):337–41.

Ghaemmaghami F, Behtash N, Yarandi F, Moosavi A, Modares M, Toogeh G, et al. First-line chemotherapy with 5-FU and platinum for advanced and recurrent cancer of the cervix: a Phase II study. J Obstet Gynaecol (Lahore). 2003;23(4):422–5.

Longley DB, Harkin DP, Johnston PG. 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003;3(5):330–8.

Xie B, Becker E, Stuparevic I, Wery M, Szachnowski U, Morillon A, et al. The anti-cancer drug 5-fluorouracil affects cell cycle regulators and potential regulatory long non-coding RNAs in yeast. RNA Biol. 2019n;16(6):727–41.

Bos JD, Meinardi MM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol. 2000;9(3):165–9.

G S. Prediction of Drug-Like Properties. Madame Curie Bioscience Database. [diunduh 22 Mei 2021]. Tersedia dari: https://www.ncbi.nlm.nih.gov/books/NBK6404/

Nursamsiar, Toding A, Awaluddin A. Studi In Silico Senyawa Turunan Analog Kalkon dan Pirimidin sebagai Antiinflamasi: Prediksi Absorpsi, Distribusi, dan Toksisitas. Pharmacy. 2016;13(1):92–100.

Shargel L, Yu A. Applied Biopharmaceutics and Pharmacokinetics. 7th ed. New York: McGraw Hill; 2016.

Vieth M. Characteristic physical properties and structural fragments of marketed oral drugs. J Med Chem. 2004;47(1):224–32.

Walmsley RM, Billinton N. How accurate is in vitro prediction of carcinogenicity? Br J Pharmacol. 2011;162(6):1250–8.

Hsu KH, Su BH, Tu YS, Lin OA, Tseng YJ. Mutagenicity in a Molecule: Identification of Core Structural Features of Mutagenicity Using a Scaffold Analysis. PLoS One. 2016;11(2):e0148900.




DOI: https://doi.org/10.24198/ijbp.v3i2.45221

DOI (PDF): https://doi.org/10.24198/ijbp.v3i2.45221.g21238

Refbacks

  • Saat ini tidak ada refbacks.


##submission.license.cc.by-nc4.footer##

IJBP by Universitas Padjadjaran is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License