Korelasi Antropometri terhadap Profil Lipid pada Masyarakat Pedesaan Cangkringan, Kabupaten Sleman, Daerah Istimewa Yogyakarta

Phebe Hendra, Dita M. Virginia, Fenty Fenty, Aris Widayati

Abstract


Prevalensi abnormalitas profil lipid cukup besar pada masyarakat pedesaan. Pengukuran profil lipid (kolesterol total (KT), low density lipoprotein (LDL), high density lipoprotein (HDL), dan trigliserida (TG)) di laboratorium membutuhkan implementasi teknologi kesehatan sedangkan di daerah pedesaan kurang tenaga medis dan permasalahan ekonomi. Pengukuran antropometri yang mudah, tidak invasif, ekonomis, dan dapat dilakukan oleh tiap individu diharapkan dapat memprediksi abnormalitas profil lipid bagi masyarakat pedesaan. Penelitian ini bertujuan untuk mengobservasi korelasi pengukuran antropometri dengan abnormalitas profil lipid di daerah pedesaan. Penelitian ini merupakan penelitian observasional dengan desain potong lintang. Pengukuran antropometri meliputi Body Mass Index (BMI), lingkar pinggang (LP), dan rasio lingkar pinggang panggul (RLPP). Kriteria inklusi adalah penduduk Kecamatan Cangkringan, Sleman, DI Yogyakarta berumur 40–60 tahun, tidak ada riwayat penyakit kardiometabolik, tidak edema, dan konsumsi obat‑obatan terkait kardiometabolik. Lokasi penelitian dipilih menggunakan klaster random sampling. Sampel penelitian dipilih secara purposive sampling dan diperoleh besar sampel 100 responden. Analisis data menggunakan Kolmogorov-Smirnov, Mann‑Whitney, dan Spearman. Hasil penelitian ini menunjukkan korelasi antara BMI (r= –0,286; p=0,044), LP (r= –0,410; p=0,003), dan RLPP (r= –0,365; p=0,009) terhadap HDL pada kelompok wanita. Terdapat juga korelasi antara BMI (r=0,325; p=0,021), LP (r=0,394; p=0,005), dan RLPP (r=0,368; p=0,009) terhadap trigliserida pada kelompok wanita. Terdapat korelasi antara BMI terhadap KT (r=0,285;p=0,045), LDL (r=0,344;p=0,014), dan TG (r=0,446; p=0,001). Parameter LP pria memiliki korelasi terhadap HDL (r= –0,355; p=0,011) dan TG (r=0,488; p=0,000). Parameter RLPP pria memiliki korelasi terhadap seluruh profil lipid; terhadap KT (r=0,287; p=0,043), LDL (r=0,338; p=0,016), HDL (r=0,316; p=0,025), dan TG (r=0,359; p=0,011). Simpulan, pada kelompok wanita pengukuran anthropometri memiliki korelasi terhadap HDL dan TG, sedangkan parameter RLPP lebih sensitif pada kelompok pria.

Kata kunci: Antropometri, masyarakat pedesaan, profil lipid

 

Correlation between Anthropometric Measurement and Lipid Profile among Rural Community at Cangkringan Village, District Sleman, Yogyakarta Province

Abstract
Abnormality lipid prevalence was higher in rural area communities. Measurement of lipid profile (total cholesterol (TC), low density lipoprotein (LDL), high density lipoprotein (HDL), and triglyceride (TG)) needs implementation of health technology whereas in rural areas lack of medical professional and economic problems. Anthropometric measurement is easy, non-invasive, economical, and every individual could do this independently, which is expected to predict abnormality of lipid profile in rural communities. Anthropometric measurements are easy and non-invasive. This study aimed to observe correlation between anthropometric measurements with abnormality of lipid profile in rural areas. This study was an observational study with cross-sectional design. Anthropometric measurements in this study were body mass index (BMI), waist circumference (WC), and waist to hip ratio (WHR). The inclusion criteria were person whose residence in Cangkringan village, Sleman, Yogyakarta Province, aged 40–60 years old, no history of cardio-metabolic disease, not edema, and no consumption of drugs associated cardio-metabolic. Locations were selected using random cluster sampling technique. Samples were selected by purposive sampling and obtained 100 respondents. Data analyzed using Kolmogorov‑Smirnov, Mann-Whitney, and Spearman. This study showed correlation between BMI (r= –0,286; p=0,044), WC (r= –0,410; p=0,003), WHR (r= –0,365; p=0,009) with HDL on women group. There was correlation between BMI (r=0,325; p=0,021), WC (r=0,394; p=0,005), WHR (r=0,368; p=0,009) with triglyceride on women. On men, there was correlation between BMI to TC (r=0,285;p=0,045), LDL (r=0,344;p=0,014), TG (r=0,446; p=0,001); WC have correlation to HDL (r= –0,355; p=0,011) TG (r=0,488; p=0,000); WHR have correlation with TC (r=0,287; p=0,043), LDL (r=0,338; p=0,016), HDL (r=0,316; p=0,025), TG (r=0,359; p=0,011). In conclusion, all anthropometric measurements (BMI, WC, and WHR) have correlation with HDL and TG on women group, whereas WHR has more sensitive correlation on men group.

Keywords: Anthropometric, lipid profiles, rural areas communities


Keywords


Antropometri, masyarakat pedesaan, profil lipid

References


Centers for Disease Control and Prevention. Heart disease facts [diunduh 7 September 2015]. Tersedia dari: http://www.cdc.gov/heartdisease/facts.htm.

World Health Organization. Cardiovascular diseases [diunduh 7 September 2015]. Tersedia dari: http://www.who.int/media centre/factsheets/fs317/en/.

Mahalle N, Garg MK, Kulkarni MV. Study of pattern of dyslipidemia and its correlation with cardiovascular risk factors in patients with proven coronary artery disease. Indian J Endocrinol Metab. 2014;18(1):48–55. doi: 10.4103/2230-8210.126532.

Kementerian Kesehatan Republik Indonesia. Riset kesehatan dasar. Jakarta: Kementerian Kesehatan Republik Indonesia; 2013.

World Health Organization (WHO). WHO country cooperation strategy 2007–2011 [diunduh 15 April 2014]. Tersedia dari: http://www.who.int/countryfocus/cooperation_strategy/ccs_idn_en.pdf.

Connecticut Housing Finance Authority. The top 10 rural issues for health care reform, center of rural affairs [diunduh 15 April 2014]. Tersedia dari: http://www.chfa.org

International Labour Organization. More than half of the global rural population excluded from health care [diunduh 7 September 2015]. Tersedia dari: http://www. ilo.org/global/about-the-ilo/newsroom/ne ws/WCMS_362525/lang--en/index.htm.

Brundisini F, Giacomini M, DeJean D, Vanstone M, Winsor S, Smith A. Chronic disease patients’ experiences with accessing health care in rural and remote areas: A systematic review and qualitative meta-synthesis. Ont Health Technol Assess Ser. 2013;13(15):1–33.

Sun G, Li Z, Guo L, Zhou Y, Yang H, Sun Y. High prevalence of dyslipidemia and associated risk factors among rural Chinese adults. Lipids Health Dis. 2014;13:189–200. doi: 10.1186/1476-511X-13-189.

Bhowmik B, Munir SB, Diep LM, Siddiquee T, Habib SH, Samad MA, et al. Antropometric indicators of obesity for identifying cardiometabolic risk faktors in a rural Bangladeshi population. J Diabetes Investig. 2013;4(4):361–8. doi: 10.1111/jdi.12053.

Zhang Z, He L, Xie X, Ling W, Deng J, Su Y, et al. Association of simple anthropometric indices and body fat with early atherosclerosis and lipid profiles in Chinese adults. PLoS ONE. 2014;9(8):1–8. doi: 10.1371/journal.pone.0104361.

Vishwanat P, Prashant A, Acharya A, Suma MN, Kiran HS, Karthik G. Use of anthropometric indices as simple predictors of deranged lipid profile and at risk population for future cardiovascular events. Int J Health Allied Sci. 2012;1(1):8–12. doi: 10.4103/2278-344X.96411.

Fu S, Luo L, Ye P, Liu Y, Zhu B, Zheng J, et al. Overall and abdominal obesity indicators had different association with central arterial stiffness and hemodynamics independent of age, sex, blood pressure, glucose, and lipid in Chinese community-dwelling adults. Dovepress. 2013;8:1579–84. doi: 10.2147/CIA.S54352.

Garg S, Vinutha S, Nachal A. Relation between anthropometric measurement and serum lipid profile amog cardio-metabocally healthy subjects: A pilot study. Indian J Endocrinol Metab. 2012;16(5):857–8. doi: 10.4103/2230-8210.100686.

World Health Organization (WHO). BMI classification [diunduh 25 Agustus 2015]. Tersedia dari: http://apps.who.int/bmi/index.jsp?introPage=intro_3.html.

International Diabetes Federation. Metabolic syndrome [diunduh 25 Agustus 2014]. Tersedia dari: https://www.idf.org/webdata/docs/IDF_Meta_def_final.pdf.

National Heart, Lung and Blood Institute. ATP III at-a-glance: Quick desk reference [diunduh 25 Agustus 2015]. Tersedia dari: http://www.nhlbi.nih.gov/health-pro/guidelines/current/cholesterol-guidelines/quick-desk-reference-html.

Joshi SR, Anjana RM, Deepa M, Pradeepa R, Bhansali A, Dhandania VK, et al. Prevalence of dyslipidemia in urban and rural India: The ICMR-INDIAB study. PLoS ONE. 2014;9(5):e96808. doi: 10.1371/journal.pone.0096808.

Hilal Y, Acar TN, Koksal E, Gezmen KM, Akbulut G, Bilici S, et al. The Association of anthropometric measurement and lipid profiles in Turkish hypertensive adults. Afr Health Sci. 2011;11(3):407–13.

Ranganathan S, Krishnan TUS, Radhakrishnan S. Comparison of dyslipidemia among the normal and high BMI group of people of rural Tamil Nadu. Med J DY Patil Univ. 2015;8(2):149–52.

Robinson JG. Management of familial hypercholesterolemia: A review of the recommendation from the national lipid association expert panel on familial hypercholesterolemia. J Manag Care Pharm. 2013;19(2):139–49. doi: 10.18553/jmcp.2013.19.2.139.

Goh LGH, Dhaliwal SS, Welborn TA, Lee AH, Della PR. Anthropometric measurements of general and central obesity and the prediction of cardiovascular disease risk in women: A cross-sectional study. BMJ Open 2014;4:e004138. doi: 10.1136/bmjopen-2013-004138.

Xu L, Mitsuhiro K, Takeshi Y, Ji KL. Visceral fat area, waist circumference and metabolic risk factors in abdominally obese Chinese adults. Biomed Environ Sci. 2012;25(2):141–8. doi: 10.3967/0895-3988.2012.02.003.

Okafor PN, Ukegbu PO, Godfrey OC, Ofoegbu MC, Uwaegbute AC. Assessment of lipid profile in middle and upper class individuals in Abia State, Nigeria based on life style and dietary habits. J Med Biomed Sci. 2014;3(3):1–8. doi: 10.4314/jmbs.v2i4.1

Febrianti ESZ, Asviandri, Farlina L, Lestari R, Cahyohadi S, Rini EA. Correlation between lipid profiles and body mass index of adolescents obesity in Padang. I J Pediatr Endocrinol. 2013;1:P87. doi: 10.1186/1687-9856-2013-S1-P87.

Pawaskar PN, Shirali A, Prabhu MV, Pai SR, Kumar NA, Pawaskar NG. Comparing utility of anthropometric indices based on gender differences in predicting dyslipidemia in healty adults. J Clin Diagn Res. 2015;9(8):1–4. doi: 10.7860/JCDR/2015/12440.6339.

Li N, Fu J, Koonen DP, Kuivenhoven JA, Snieder H, Hofker MH. Are hypertriglyceridemia and low HDL causal factors in the development of insulin resistance?. Atherosclerosis. 2014;233(1):130–8. doi: 10.1016/j.atherosclerosis.2013.12.013.

Shamai L, Lurix E, Shen M, Novaro GM, Szomstein S, Rosenthal L, et al. Association of body mass index and lipid profiles: Evaluation of a broad spectrum of body mass index patients including the morbidly obese. Obes Surg. 2011;21(1):42–7. doi: 10.1007/s11695-010-0170-7.

Grundy SM, Neeland IJ, Turer AT, Vega GL. Waist circumference as Measure of abdominal fat compartments. Hindawi J Obes. 2013;2013:454285. doi: 10.1155/2013/454285.

Mishra N, Sharma MK, Chandrasekhar M, Suresh M, Prasad SV, and Kondam A. Central obesity and lipid profile in North Indian males. Int J Appl Biol Pharm. 2012;3(3):291–4.




DOI: https://doi.org/10.15416/ijcp.2017.6.2.107

Refbacks

  • There are currently no refbacks.


 Indonesian Journal of Clinical Pharmacy is indexed by

        

  Creative Commons License

IJCP by Universitas Padjadjaran is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

 

View My Stats