

The Effect of Heating Duration on the Content of Active Compounds and Antibacterial Properties in Black Garlic

Tsurayya N. D. Nurulloh¹, Lovita Adriani², and Tuti Widjastuti³

Postgraduate Student in Animal Production, Faculty of Animal Husbandry, Padjadjaran University, Sumedang Lecturer in Animal Physiology and Biochemistry, Faculty of Animal Husbandry, Padjadjaran University, Sumedang Lecturer in Animal Production, Faculty of Animal Husbandry, Padjadjaran University, Sumedang

Abstract

Garlic (*Allium sativum*) is a plant originating from Central Asia and has become an important part of traditional cuisine and medicine. *Black garlic* is the result of garlic fermentation and possesses strong antioxidant properties as well as antibacterial properties that can enhance health functions. The aim of this study is to determine the optimal heating duration for *black garlic* that produces the best active compounds, antioxidant activity, and antibacterial activity as a feed additive in poultry feed, which will later be applied to broiler chickens. The study utilized a Completely Randomized Design (CRD) with 3 treatments and 6 replications. The treatments included: T1 = 15dfermentation; T2 = 20d fermentation; T3 = 25dfermentation fermentation at a heating temperature of 70°C with humidity 70-80% Parameters measured included active ingredient content, antioxidants, and antibacterial properties. The research findings were analyzed using ANOVA. If significant differences were found, further testing was conducted using Duncan's Multiple Range Test. The results indicated that flavonoid content was detected in *black garlic* and showed significant effects (P<0.05) on polyphenol content, antioxidants, and antibacterial properties. The conclusion of this study suggests that a fermentation duration of 20 days is optimal for *black garlic* production.

Keywords: antibacteri, antioxidan, black garlic

Pengaruh Lama Pemanasan Terhadap Kandungan Zat Aktif dan Antibakteri pada *Black Garlic*

Abstrak

Bawang putih (Allium sativum) adalah tumbuhan yang berasal dari Asia Tengah dan telah menjadi bagian penting dari masakan dan obat-obatan tradisional. Black garlic merupakan hasil fermentasi bawang putih yang memiliki sifat antioksidan yang kuat dan juga sebagai antibakteri yang dapat meningkatkan fungsi kesehatan. Tujuan penelitian ini untuk mengetahui berapa lama pemanasan yang optimal pada black garlic yang menghasilkan zat aktif, aktivitas antioksidan, dan aktivitas antibakter terbaik sebagai feed additive pada pakan ternak unggas yang nantinya akan diaplikasikan pada ayam broiler. Penelitian yang digunakan adalah Rancangan Acak Lengkap (RAL) dengan 3 perlakuan dan 6 ulangan. Perlakuan yang dilakukan pada penelitian yaitu P1 = fermentasi 15 hari; P2 = fermentasi 20 hari; P3 = fermentasi 25 hari dengan suhu pemanasan 70°C dengan kelembapan 70-80%.Parameter yang diukur meliputi kandungan zat aktif, antioksidan dan antioksidan. Hasil penelitian dianalisis ANOVA. Apabila terdapat perbedaan yang nyata maka dilakukan uji lanjut dengan Uji Jarak Berganda Duncan. Hasil pengujian zat aktiv terdeteksi kandungan flavonoid pada black garlic serta menunjukan hasil berpengaruh nyata (P<0,05) pada kandungan polifenol, antioksidan, dan antibakteri. Kesimpulan penelitian ini menunjukan bawah lama fermentasi selama 20 hari merupakan waktu optimal untuk pembuatan black garlic.

Kata Kunci: antibakteri, antioksidan, black garlic

Article History: Submitted 25 July 2024 Revised 30 July 2024 Accepted 30 July 2024 Published 13 August 2025

*Corresponding author: tsurayya15002@mail.unpad. ac.id

Citation:

Nurulloh, T.N.D.; Adriani, L.; Widjastuti, T. The Effect Of Heating Duration On The Content Of Active Compounds And Antibacterial Properties In Black Garlic. Indonesian Journal of Pharmaceutical Science and Technology. 2025: 12 (2), 184-190.

1. Pendahuluan

Bawang putih (Allium sativum) adalah tumbuhan yang berasal dari Asia Tengah dan telah menjadi bagian penting dari masakan dan obat-obatan tradisional di berbagai budaya di seluruh dunia. Bawang putih mengandung berbagai senyawa bioaktif yang memberikan banyak manfaat kesehatan. Salah satu senyawa paling terkenal adalah allicin. Allicin memiliki sifat antimikroba, anti-inflamasi, dan antioksidan, yang membuatnya efektif dalam melawan infeksi dan mengurangi peradangan.1 Namun, dengan berbagai manfaat kesehatan dari bawang putih, tidak semua orang suka dengan bau dan aroma yang khas dari bawang putih. Oleh karena itu Untuk meminimalisir bau khas dan mepertahankan kandungan allicin dalam bawang putih perlu mendapatkan perlakuan terlebih dahulu melalui fermentasi atau pemanasan pada temperatur dan kelembaban tertentu untuk mempertahankan kandungannya.2

Salah satu produk dari fermentasi bawang putih adalah *black garlic*. Proses fermentasi ini melibatkan pemanasan bawang putih pada suhu dan kelembaban tertentu selama beberapa minggu hingga beberapa bulan, yang mengakibatkan perubahan kimia dan fisik pada bawang putih. Selain perubahan fisikokimia, pemanasan juga meningkatkan kandungan senyawa bioaktif dalam bawang putih, seperti polifenol, flavonoid, dan S-allyl cysteine (SAC). Perlakuan panas pada bawang putih menyebabkan reaksi pencokelatan non-enzimatik yang menghasilkan senyawa dengan sifat antioksidan yang kuat. Proses pemanasan ini juga dapat menonaktifkan enzim alliinase pada suhu di atas 60°C.4

Fermentasi juga menyebabkan perubahan warna bawang putih menjadi warna hitam, karena kandungan bahan keringnya rendah dan mempunyai aroma serta rasa yang tidak terlalu menyengat (sweet-sour). hal ini, disebabkan karena terjadi transformasi alliin menjadi allicin sebagai inaktivasi panas alliinase.5 Allicin bersifat tidak stabil sehingga dalam proses pemanasan komponen tersebut diubah menjadi S-allyl cysteine (SAC) menjadi senyawa yang lebih stabil. Jumlah S-allyl Cysteine yang ditemukan dalam black garlic lima sampai enam kali lebih banyak daripada yang ditemukan pada bawang putih segar.7 Kandungan S-Allylcyctein dalam ekstraksi bawang hitam yang di hasilkan sebesar 194,3 µg/g (0,1943 mg/g), hasil ini meningkat signifikan dari bawang putih segar yang megandung S-Allylcycteine sebesar 23,7 µg/g (0,0237 mg/g).6

Black garlic hasil dari fermentasi bawang putih, telah mendapatkan perhatian luas karena manfaat kesehatannya yang potensial. Senyawa aktif dalam black garlic, seperti S-allylcysteine, diketahui memiliki sifat antioksidan yang kuat, yang dapat membantu melawan radikal bebas. Selain itu, black garlic juga menunjukkan efek anti-inflamasi dan imunomodulator, yang mendukung kesehatan sistem kekebalan tubuh.

Meningkatnya permintaan untuk feed additive alami dan berkelanjutan dalam produksi ternak, black garlic menjadi pilihan menarik sebagai feed additive yang dapat meningkatkan performa ternak unggas. Tujuan penelitian ini untuk mengetahui berapa lama pemanasan yang optimal pada black garlic yang menghasilkan zat aktif, aktivitas antioksidan, dan aktivitas antibakteri terbaik sebagai feed additive pada pakan ternak unggas yang nantinya akan diaplikasikan pada ayam broiler.

2. Bahan dan Metode

2.1. Alat

Pada penelitian ini alat-alat yang digunakan adalah ricecooker (Cosmos, Indonesia), Oven (Yenaco, China), Tabung reaksi (Iwaki, Indonesia), Pipet (Ecopipette CAPP, Denmark), *Vortex mixer* (Raypa, Spanyol), *Refrigerated centrifuge* (Sigma, Germany), Spectrofotometer UV-Vis (Shimadzu, Germany), Labu ukur 10 ml, Rotavapor (Buchi, Swiss), Neraca analitik (Shimadzu, Germany), Erlenmeyer (Pyrex, Germany), autoclave (Raypa, Spain), Laminar Flow cabinet (streamline, Singapore), Disposable Cawan petri (Bioseen, china), Blender (Philips, Belanda).

2.2. Bahan

Bawang putih yang digunakan berasal dari pasar Caringin, *Escherichia coli* (Lab. Riset dan Pengujian Bioteknologi), *Staphylococcus aureus* (Lab. Riset dan Pengujuan Bioteknologi), HCL (Merck), serbuk Mg (), H₂SO₄ (Merck), NaOH 10% (Merck), DPPH (Merck), Etanol (CV. Meteora Pelangi Jaya), Aquadest (Aqua Science), Na₂CO₃ (Merck), *Follin-Ciocalteu* (Merck), Mueller Hinton Agar (Himedia), NaCl fisiologis (Ostsuka), BaCl2 (Merck), Kertas Saring Wattman (Cytiva), Alumunium Foil (KlinPak).

2.3. Prosedur

Rangkaian penelitian yang dilakukan meliputi fermentasi bawang putih dan pengujian sample (aativitas antioksidan, analisis zat aktif aktivitas antibakteri).

2.3.1. Proses Pembuatan Black Garlic

Sebelum pembuatan *black garlics*, bawang putih dilakukan menyortiran dan seleksi bawang putih dari

yang sudah terkelupas kulitnya dan tidak busuk, serta memiliki ukuran yang sama agar pematangannya juga serentak. Setelah diseleksi dibungkus menggunakan alumunium foil, dimasukan ke dalam oven dengan suhu 70°C dengan kelembapan 70-80%. Perlakuan masing-masing yaitu P1 (fermentasi selama 15 hari), P2 (Fermentasi selama 20 hari), P3 (Fermetasi selama 25 hari).

2.3.2. Proses Pembuatan Tepung Black Garlic

Black garlic yang telah dipanen dan dipilih dipaparkan pada suhu ruangan selama 2-3 jam untuk menurunkan dan menstabilkan suhu panas. Setelah dipisahkan dari kulitnya, black garlic dikeringkan menggunakan oven pada suhu 50°C sampai benar-benar kering.⁵ Selanjutnya, garlic yang telah dikeringkan diiris tipis-tipis dan dihaluskan menggunakan penggiling (grinder).⁸ Hasil penggilingan kemudian disaring kembali dengan ayakan berukuran 30 mesh.

2.3.3. Pengujian Sampel

Kandungan Zat Aktif Flavonoid

Uji Flavonoid dengan HCl dan logam Mg

1 mL ekstrak metanol dari tepung *black garlic* dan tepung bawang putih dimasukkan ke dalam tabung reaksi. Kemudian ditambahkan 2 tetes asam klorida pekat dan dikocok kuat. Serbuk magnesium (Mg) kemudian ditambahkan ke dalam campuran dan dikocok kembali. Kehadiran flavonoid dalam sampel akan ditunjukkan oleh timbulnya buih dengan intensitas yang signifikan, serta perubahan warna larutan dari hijau muda awal menjadi jingga.⁹

Uji Flavonoid dengan H₂SO4

1 mL ekstrak metanol tepung black garlic dan tepung bawang putih dimasukkan ke dalam tabung reaksi, diikuti dengan penambahan 2 tetes H₂SO₄ 2 N, kemudian dikocok kuat. Kehadiran flavonoid dalam sampel akan terindikasi oleh perubahan warna larutan yang sangat mencolok dari hijau muda awal menjadi kuning, merah, atau coklat.⁹

Uji flavonoid dengan NaOH 10%

1 mL ekstrak metanol dari tepung black garlic dan tepung bawang putih dimasukkan ke dalam tabung reaksi, diikuti dengan penambahan 2 tetes NaOH, kemudian dikocok kuat. Kehadiran flavonoid dalam sampel akan terindikasi oleh perubahan warna larutan yang sangat mencolok dari hijau muda awal menjadi kuning, merah, coklat, atau hijau.⁹

Polifenol Total

Sebanyak 10 mg ekstrak etanol dari daun serunai dilarutkan dalam campuran etanol dan aquades dengan perbandingan 1:1, mencapai volume 10 ml. Sebanyak 0,3 ml dari larutan ekstrak yang dihasilkan dipipet ke dalam tabung reaksi, diikuti dengan penambahan reagen Folin-Ciocalteau. Campuran diaduk dan didiamkan selama 3 menit. Selanjutnya, ditambahkan larutan Na₂CO₃ 7% sebanyak 1,2 ml, dan campuran didiamkan selama 60 menit pada suhu kamar. Absorbansi larutan ekstrak diukur menggunakan Spektrofotometri UV-Vis pada panjang gelombang 765 nm Proses ini diulang untuk analisis.¹⁰ Kadar Fenolik dihitung menggunakan rumus:

$$TPC (Total \ Phenolic \ Content) = (\frac{c \times v}{g})$$

Keterangan:

c = Konsentrasi fenolik (nilai x)

v = Volume ekstrak yang digunakan

g = berat sampel yang digunakan

Aktivitas Antioksidan

Pengujian aktivitas antioksidan dari fermentasi daun gambir dilakukan menggunakan metode DPPH (2,2-difenil-1-pikrilhidrazil). Aktivitas antioksidan diamati melalui perubahan warna sampel setelah bereaksi dengan DPPH selama inkubasi. Selanjutnya, nilai absorbansi sampel diukur dengan spektrofotometer UV-Vis pada panjang gelombang 517 nm.¹¹ Pengukuran penagnkapan radikal bebas oleh DPPH dilakkan dengan menggunakan rumus:

$$\textit{Daya hambat } = (\frac{\textit{Arbsorpsi blanko} - \textit{Arbsorbansi sampel})}{\textit{Arbsorbansi blanko}} \times 100\%$$

Persamaan regesi linier yang didapat (y=bx+c) dari kurva hubungan antara konsentrasi dengan % IC dihitung 50% penghambatnya.

$$50\% penghambatan (\%IC50) = \frac{50 - a}{b}$$

Keterangan:

Y = % inhibisi (50)

a = intercept

(perpotongan garis di sumbu Y)

b = slope (kemiringan)

X = konsentrasi

Daya Hambat Terhadap Bakteri

Daya hambat terhadap bakteri *Escherichia coli* dan *Staphylococcus aureus* dari *black garlic* yang dipanaskan pada suhu berbeda diuji menggunakan metode difusi agar. ¹² Diameter zona hambat yang dihasilkan terhadap pertumbuhan kedua bakteri tersebut diukur menggunakan jangka sorong. Rumus untuk menghitung diameter zona hambat adalah

sebagai berikut:

zona hambat =
$$\frac{(Dv - Dc) + (Dh - Dc)}{2}$$

Keterangan:

Dv: Diameter vertical Dh: Diameter horizontal Dc: Diameter Cakram³

Data dianalisis menggunakan Rancangan Percobaan Rancangan Acak Lengkap (RAL) dengan 3 perlakuan dan 6 ulangan. Setelah itu, dilakukan Uji Lanjut Berjarak Duncan (DMRT) untuk analisis lebih lanjut.

3. Hasil

3.1. Kandungan Antioksidan Black Garlic

Hasil pengujian zat aktif black garlic, menguji kandungan senyawa flavonoid dan polifenol dalam black garlic. Untuk pemgujian flavonpid lebih ke arah ada tidaknya senyawa sekunder atau disebut uji kualitatif. Sedangkan untuk uji polifenol lebih kearah pengujian kuantitatif.

Flavonoid

Uji kualitatif flavonoid menunjukan pada perlakuan P1, P2, dan P3 memiliki hasil yang sama yaitu ada pereaksi HCL pekat + Mg memiliki nilai sedikit (+) dan pada pereaksi NaOH memiliki nilai sedang (++). Sedangkan, dengan menggunakan pereaksi H₂SO₄ tidakada reaksi

Polifenol Total

Kandugan polifenol total dari tepung *black garlic* dan bawang puih ditunjukan pada Tabel 2. diketahui bahwa senyawa fenolik, yang merupakan bagian dari produk tanaman, memiliki manfaat kesehatan yang baik karena aktivitas bioaktifnya.¹³

Berdasarkan data hasil uji menunjukan berbeda nyata (P<0,05) meningkatnya kandungan polifenol. kandungan polifenol bawang putih lebih rendah dibandingkan dengan *black garlic*. Dengan hasil tertinggi pada P2 yaitu sebesar 1,26% sedangkan hasil fermentasi pada P1 mendapakan nilai sebesar

0,91% dan P3 sebesar 0,76%.

3.2. Aktivitas Antioksidan

Pengukuran kandungan antioksidan dilakukan dengan metode radikal bebas DPPH, di mana larutan DPPH berperan sebagai radikal bebas, dan hasilnya dinyatakan dalam nilai IC₅₀ seperti yang tertera dalam Tabel 3.

Hasil fermentasi bawang putih menjadi *black garlic* terhadap aktivitas antioksidan berbeda nyata (P<0,05) dengan hasil hasil P2 sebesar 1190,15 ppm yang terlihat pada Tabel 3. Nilai aktivitas antioksidan dengan fermentasis selama 20 hari mendapatkan hasil yang lebih bauk dibandingkan dengan perlakuan lain.

3.3. Uji Daya Hambat Bakteri

Pengukuran zona inhibisi pada daerah transparan diambil setelah bakteri diinkubasi selama 24 jam. Tabel 4menampilkan data hasil pengukuran zona inhibisi untuk setiap perlakuan.

Uji Aktivitas antibakteri pada *black garlic* mendapatkan hasil berbeda nyata (P<0,05) dengan hasil terbaik perlakuan bakteri *Eschericia coli* yaitu P3 sebesar 4,9 mm dan hasil terendah pada P1 1,7 mm. sedangkan, perlakuan bakteri *Staphylococcus aureus* pada P3 sebesar 6,4 mm dan terendah pada P1 sebesar 4,1 mm. hasil tersebut masih lebih rendah daripada perlakuan bawang putih.

4. Pembahasan

4.1. Kandungan Antioksidan Black garlic

Flavonoid

Tabel 1. menunjukkan bahwa uji flavonoid pada *black garlic* menghasilkan hasil positif. Ketika asam klorida pekat dan serbuk magnesium ditambahkan ke dalam sampel *black garlic*, terjadi perubahan warna dari hijau muda menjadi jingga. Namun, hal ini tidak terjadi pada bawang putih. Uji juga menunjukkan hasil positif saat sampel *black garlic* direaksikan dengan basa kuat seperti natrium hidroksida (NaOH), yang menghasilkan

Tabel 1. Data Hasil Kadar Flavonoid pada Black garlic dan Bawang Putih

Parameter	Metode Uji		
	Pereaksi HCl Pekat + Mg	Pereaksi H₂SO₄	Pereaksi NaOH 10%
Bawang putih	-	-	+
P1	+	-	++
P2	+	-	++
P3	+	-	++

Keterangan: (-) = Tidak ada; (+) = Sedikit; (++) = sedang

Tabel 2. Data Hasil Kadar Polifenol Total pada Black garlic

Bawang	Kadar Polifenol Total (%)
Bawang putih	0,06
P1	0,91 ^b
P2	1,26ª
P3	0,76°

. Huruf superscript yang berbeda menunjukan perbedaan yang signifikan (p<0,05). P1: fermentasi 15 hari; P2 : fermentasi 20 hari; P3 : fermentasi 25 hari

asetofenon berwarna merah.¹⁴ Namun, uji flavonoid memberikan hasil negatif saat sampel direaksikan dengan asam sulfat (H₂SO₄), yang menunjukkan tidak terbentuknya garam flavilium.

Hal ini menunjukkan bahwa kandungan flavonoid dalam *black garlic* lebih tinggi daripada dalam bawang putih. Temuan ini konsisten dengan pernyataan¹⁵ yang menyatakan bahwa proses reaksi Maillard meningkatkan jumlah flavonoid dalam *black garlic*, sehingga membuatnya memiliki kandungan yang lebih tinggi dibandingkan bawang putih segar.

Polifenol Total

Hasil dari lama pemanasan *black garlic* selama 15 dan 20 hari mengalami peningkatan dari 0,91% menjadi 1,26%. Namun, pada hari ke 25 mengalami penurunan kadar polifenol total menjadi 0,76%. hal tersebut dapat dilihat bahwa pemanasan pada hari ke 20 optimal meninkatkan kandungan polifenol dibandingkan dengan perlakuan lain. Pemanasan selama 20 hari mampu memecah dinding sel di mana senyawa polifenol terikat secara kuat secara kovalen pada dinding sel. ¹⁶ Proses ini memungkinkan ekstraksi senyawa polifenol dengan merusak atau mengurai komponen lignoselulosa yang menyertainya, seperti lignin, protein, serta karbohidrat seperti selulosa dan hemiselulosa.

Pada hari ke 25 terjadinya penuruan polifenol menjadi 0,76%. Terjadinya penurunan dapat dikarenakan pemanasan suhu tinggi dan dalam waktu yang lama. Menurut penelitian¹⁷ menunjukan bahwa pemanasan dapat menurunkan kadar polifenol secara signifikan karena senyawa ini mudah teroksidasi dan terdegradsi pada suhu tinggi. Pemanasan pada suhu tinggi dan dalam waktu yang lama dapat mengubah struktur

atau mengoksidasi molekul polifenol, menyebabkan penurunan kandungan polifenol. Pemanasan yang berlangsung lama juga dapat memengaruhi aktivitas enzim yang membantu dalam sintesis atau melindungi polifenol, sehingga mengurangi kandungan polifenol secara keseluruhan.

4.2. Aktivitas Antioksidan

Dilihat dari Tabel 3. Bahwa nilai aktivasi antioksidan black garlic lebih tinggi dibanding dengan bawang Nilai IC₅₀ berbanding terbalik dengan kemampuan antioksidan suatu senyawa. Semakin kecil nilai IC₅o menunjukkan tingkat keefektifan yang lebih tinggi sebagai penangkal radikal bebas. 18 Reaksi Maillard merupakan faktor kunci dalam pembuatan bawang hitam. Peningkatan aktivitas antioksidan dalam bawang hitam disebabkan oleh peningkatan konsentrasi senyawa aktif dan pembentukan senyawa baru melalui reaksi Maillard. Senyawa aktif yang meningkat termasuk flavonoid dan polifenol, sementara senyawa baru yang terbentuk adalah S-allylcysteine (SAC).19

Dalam Proses maillard ini dapat meningkatkan pembentukan senyawa bioaktif seperti polifenol dan flavonoid, yang memiliki potensi menjadi antioksidan yang kuat. Oleh karena itu, hal ini dapat menjadi salah satu alasan meningkatnya aktivitas antioksidan dalam bawang hitam. Dapat dilihat bahwa aktivitas antioksidan paling tinggi berada pada hari ke-20. aktivitas antioksidan yang tinggi dipengaruhi secara signifikan oleh berbagai jenis dan jumlah senyawa fenol yang dihasilkan. Senyawa fenolik berfungsi sebagai antioksidan karena kemampuannya untuk menyumbangkan atom hidrogen atau elektron, sehingga membentuk intermediate radikal bebas yang stabil.²⁰

Tabel 3. Data aktiviktas antioksidan (DPPH) pada Black garlic

Bawang	IC₅₀ (ppm) Rata - rata	
Bawang putih	24008,18	
P1	1277,18 ^b	
P2	1190,15ª	
P3	1748,97°	

Huruf superscript yang berbeda menunjukan perbedaan yang signifikan (p<0,05). P1: fermentasi 15 hari; P2: fermentasi 20 hari; P3: fermentasi 25 hari

Tabel 4. Aktivitas Antibakteri Black garlic terhadap E. coli dan S. aureus

Bakteri	Bawang	Diameter Zona Hambat (mm²)
Escherichia coli	Bawang putih	22,4
	P1	1,7°
	P2	5,7 ^b
	P3	4,9ª
Staphylococcus aureus	Bawang putih	28,1
	P1	4,1°
	P2	5,3 ^b
	P3	6,4ª

Huruf superscript yang berbeda menunjukan perbedaan yang signifikan (p<0,05). P1: fermentasi 15 hari; P2 : fermentasi 20 hari; P3 : fermentasi 25 hari. Keterangan : diamater perferator 0,43mm

4.3. Uji Daya Hambat Bakteri

Berdasarkan hasil pada tabel terdapat kemungkinan kandungan zat aktif pada bawang putih dan black garlic sama-sama dapat efektif terhadap bakteri Staphylococcus aureus dan Escherichia coli Dilihat dari tabel bahwa bawang putih memiliki respon daya hambat bakteri lebih besar dibandingkan dengan black garlic dilihat dari zona inhibitornya. Bawang putih dikenal karena kandungan allicin yang kuat, senyawa yang memiliki sifat antibakteri yang efektif. Sementara itu, black garlic, hasil fermentasi bawang putih, memiliki kandungan flavonoid dan S-allylcysteine yang tidak sekuat allicin dalam melawan bakteri. kekuatan antibakterinya kurang dari allicin yang terkandung dalam bawang putih mentah. Sesuai dengan penelitian²¹, allicin adalah senyawa utama dalam bawang putih yang bertanggung jawab atas aktivitas antibakteri yang kuat, sementara S-allylcysteine hanya memiliki efek antibakteri yang moderat. Menurut penelitian yang dilakukan oleh²², allicin dapat meningkatkan permeabilitas dinding bakteri dengan menguraikan gugus sulfhidril dan disulfida pada asam amino sistin dan sistein. Hal ini bertujuan untuk mencegah pembentukan enzim protease yang dapat menyebabkan kerusakan pada membran sitoplasma dinding bakteri. Akibatnya, gangguan metabolisme protein dan asam nukleat terjadi, yang menghambat pertumbuhan bakteri.

Hasil pada Tabel 4 menunjukkan bahwa sampel *black garlic* memiliki zona inhibitor yang lebih besar terhadap *Staphylococcus aureus* dibandingkan dengan *Escherichia coli*. Perbedaan ini dapat disebabkan oleh struktur dinding sel bakteri Gram positif yang lebih sederhana, memungkinkan senyawa antibakteri untuk menembus dengan lebih mudah ke dalam sel dan menemukan tempat yang cocok untuk beroperasi.²³ Bakteri Gram-negatif dapat menghasilkan enzim yang menghancurkan antibiotik yang dikenal sebagai enzim adenilase, fosforilase, atau asetilase sehingga dapat menghancurkan atau merusak zat antibakteri.²⁴ Flavonoid dan S-allylcysteinedalam *black garlic* dapat

mengganggu integritas membran sel bakteri dengan berinteraksi langsung, yang mengakibatkan kebocoran komponen-komponen penting sel seperti protein, asam nukleat, dan ion-ion. Hal ini dapat menyebabkan kematian sel pada bakteri. Penelitian yang dilakukan oleh²⁵ menunjukkan bahwa flavonoid memiliki aktivitas antibakteri dengan cara menghambat sintesis asam nukleat, inaktivasi enzim, dan merusak membran sel. Sementara itu, S-allylcysteine juga memiliki aktivitas antibakteri dengan mekanisme utama yang mengganggu integritas membran sel bakteri.²⁶

5. Simpulan

Pemanasan *Black garlic* dengan pemanasan yang berbeda selama 20 hari menghasilkan polifenol total, flavonoid, antibakteri dan antioksidan terbaik dibandingkan dengan perlakuan yang lain sedangkan perlakuan bawang putih memiliki antibakteri terbaik dibandingkan dengan perlakuan lain.

Konflik Kepentingan

Penulis menyatakan bahwa data yang dipublikasikan pada naskah ini tidak ada konflik kepentingan terhadap pihak manapun.

Daftar Pustaka

- Kimura S. et al. Black garlic: A critical review of its production, bioactivity, and application. Review Article: Journal of Food and Drugs Analysis. 2017. 25(1), pp. 62-70.
- Sung SY, Sin LT, Tee TT, Bee ST, Rahmat AR, and Rahman WA. Control of bacteria growth on ready-toeat beef loaves by antimicrobial plastic packaging incorporated with garlic oil. Food Control Journal. 2014. . 39(1):214-221
- Handayani SN, Bawono LC, Ayu DP & Pratiwi, HN. Isolasi Senyawa Polifenol Black Garlic dan Uji Toksisitasnya. Jurnal Ilmu Kefarmasian Indonesia 2018. 6(2), pp. 145-149.
- 4. Hernawan UE, & Setyawan AD. Review: Senyawa organosulfur bawang putih (Allium sativum L.) dan aktivitas biologinya. Biofarmasi. 2003. 1(2), 65-76.

- Nelwida et al. Kandungan Nutrisi Black garlic Hasil Pemanasan dengan Waktu Berbeda. Jurnal Ilmiah Ilmu-Ilmu Peternakan. 2019. Vol 22 No.1: 53-64
- Zhang X., Li N.; Lu X.; Liu P.; Qiao X. Effects of temperature on the quality of black garlic. J. Sci. Food Agric. 2015
- Isna MK., Yasinta N, Aliyah AN, Dian EE. Kajian Efektivitas Ekstrak Black Garlic (Allium Sativum Linn.). National Coneference PKM Center Sebelas Maret University. 2020.
- 8. Hendra AK, ryanto budiono, albina natarika, arum Mirani dan novia andriani. The effect of processing time on the total phenolic, flavonoid content, and antioxidanr activity of multibulb and single black garlic. J. teknol. Dan industry pangan. 2022. vol. 33 (1): 69-76
- Miluhu, M, Runttuwene MRJ, Koleangan HSJ. Skrining Fitokomia dan Aktivitas Antioksidan Esktrak Metanol Kulit Batang Soyogik (Saurauia bracteosa DC). 2017. Vol 10 (1)
- Purwantiningsih TI, Suranindyah YY, dan Widodo. (2014). Aktivitas senyawa fenol dalam buah mengkudu (Morinda citrifolia) sebagai antibakteri alami untuk penghambatan bakteri penyebab mastitis. (2014). Vol. 38 (1)
- Andriani D. dan MurtisiwiL. Penetapan Kadar Fenolik Total Ekstrak Etanol Bunga Telang (Clitoria ternatea L.) Dengan Metode Spektrofotometri UV Vis. Cendekia Journal of Farmasi. 2018. Hal: 32-37
- 12. Kesuma S dan Yenrina R. Antioksidan Alami dan Sintetik. Andalas University Press. 2015.
- Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966. 45(4):493-6. PMID: 5325707
- Liao DY, Chai YC, Wang SH, Chen CW, Tsai MS. Antioxidant activities and contents of flavonoids and phenolic acids of Talinum triangulare extracts and their immunomodulatory effects. J Food Drug Anal. 2015. 23: 294-302
- Achmad, SA. Kimia organik bahan alam. Karnunika. 1986.
- Choi S, Han SC, Lee YS. Physicochemical and Antioxidant Properties of Black garlic. molecues . 2014.

- 19: 16811-16823
- Gonzalez M, Coronel AR, and Mancera M. Antioxidant activity of fermented and nonfermented coffee (Coffea arabica) pulp extracts. Food Technol Biotechnol. 2011. 49: 374-378.
- Gómez-Plaza E, Miñano A, & López-Roca JM. Comparison of chromatic properties, stability and antioxidant capacity of anthocyanin-based aqueous extracts from grape pomace obtained from different vinification methods. Food Chemistry. 2004.87(1), 89-96.
- Molyneux P. The use of stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioksidan activity. Songklanakarin Journal of Science Technology. 2004. 26(2), 211-219.
- Ryu JH, and Dawon K, Physicochemical properties, biological activity, health benefits, and general limitations of aged black garlic: A Review. J. Molecules. 2017. 22. (919): 1 - 13. Doi: 10.3390/molecules 22060919
- 21. Karunamoorthy M, Perumal A, and Thangavel B. Evaluation of antioxidant properties of marine microalga Chlorella marina (Butcher, 1952). Asian Pacific Journal of Tropical Biomedicine. 2012.342–S346.
- 22. Borlinghaus J, Albrecht F, Gruhlke MC, Nwachukwu ID, & Slusarenko AJ. Allicin: chemistry and biological properties. Molecules. 2014.19(8), 12591-12618
- 23. Pajan SA, Waworuntu O, Leman MA. Potensi antibakteri air perasan bawang putih (Allium sativum L.) terhadap pertumbuhan Staphylococcus aureus. Pharmacon J. Ilmiah Farmasi. 2016. 5(4):2302–2493
- 24. Setiyoningrum F, Herlina N, Afiati F and Priadi G. Antibacterial Activities of Solo garlic. ISAC. 2020.
- 25. Murwani S. Dasar-Dasar Mikrobiologi Veteriner. Universitas Brawijaya Press. 2015.
- Xie Y, Yang W, Tang F, Chen X, & Ren, L Antibacterial activities of flavonoids: structure-activity relationship and mechanism. Current Medicinal Chemistry. 2015. 22(1), 132–149.
- 27. Fujisawa H Sum, Sakio K, Fujimoto H & Ike Y Antibacterial potential of garlic-derived allicin and other allicincontaining allyl thiosulfinates. Journal of Agricultural and Food Chemistry. 2009. 57(5), 1691–1698.