Variasi Volume Sari Buah dan Infusa Kulit Buah Jeruk (Citrus sinensis) Terhadap Karakteristik dan Aktivitas Antibakteri Nanosilver

David Sarono Putro, Dian E. Ermawati, Adi Yugatama

Abstrak


Biosintesis nanosilver dengan buah jeruk (C. sinensis) sebagai bioreduktor diketahui dapat menghasilkan perak berukuran nano. Penelitian ini bertujuan melihat pengaruh variasi volume kombinasi sari buah dengan infusa kulit buah jeruk terhadap karakteristik dan aktivitas antibakteri nanosilver. Sintesis nanosilver dilakukan dengan mencampur larutan AgNO3 1 mM dengan kombinasi sari buah – infusa kulit buah jeruk dengan perbandingan (v/v), 3:0; 1,5:1,5; 1:2; 0,5:2,5 dan 0:3 padapenangas air bersuhu 60˚C selama 45 menit. Perubahan warna larutan mengindikasikan telah terbentuknya nanosilver    dan konfirmasi dilakukan dengan spektrofotometer UV/Vis serta analisis TEM. Hasil penelitian menunjukkan penambahan sari buah pada bioreduktor kombinasi dapat mempercepat terjadinya perubahan warna dan karakterisasi nanosilver dengan spektrofotometer UV/Vis mengkonfirmasi puncak SPR direntang 438-459 nm. Pengujian stabilitas memperlihatkan nanosilver hasil reduksi dengan kombinasi sari buah – infusa kulit buah jeruk 0,5:2,5 (v/v) memiliki stabilitas paling memenuhi syarat dan pengujian zona hambat dengan metode difusi terhadap bakteri S.aureus (19,50 mm) dan S.epidermidis (18,09 mm) yang dihasilkan lebih besar daripada nanosilver hasil reduksi kombinasi formula lainnya, yang mengindikasikan responhambat sedang. Analisis TEM menunjukkan nanosilver berukuran 30-56 nm berbentuk bulat.


Kata Kunci


Nanosilver, biosintesis, Citrus sinensis, karakteristik, aktivitas antibakteri.

Teks Lengkap:

PDF

Referensi


Rezvani, E., Rafferty, A., McGuinness, C., Kennedy, J. 2019. Adverse Effects of Nanosilver on Human Health and The Environment. Acta Biomaterial, 94:145– 159.

Ahmed, S., Ahmad, M., Swami, BL., Ikram, S. 2016. A Review on Plants Extract Mediated Synthesis of Silver Nanoparticles for Antimicrobial Applications: A Green Expertise. Journal of Advanced Research, 7(1):17–28.

Rai, M., Alves dos Santos, C. 2017. Nanotechnology Applied To Pharmaceutical Technology. Springer International Publishing.

Hebbalalu, D., Lalley, J., Nadagouda, M N., Varma, RS. 2013. Greener Techniques for The Synthesis of Silver Nanoparticles Using Plant Extracts, Enzymes, Bacteria, Biodegradable Polymers, and Microwaves. ACS Sustainable Chemistry & Engineering, 1(7):703–712.

Velgosova, O., Čižmárová, E., Málek, J., Kavuličova, J. 2017. Effect of Storage Conditions on Long-Term Stability of Ag Nanoparticles Formed via Green Synthesis. International Journal of Minerals, Metallurgy, and Materials, 24(10):1177–1182.

Sujitha, MV., Kannan, S. 2013. Green Synthesis of Gold Nanoparticles Using Citrus Fruits (Citrus limon, Citrus reticulata and Citrus sinensis) Aqueous Extract and Its Characterization. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 102:15– 23.

Arooj, N., Dar, N., Samra, ZQ. 2014. Letter to the Editor Stable Silver Nanoparticles Synthesis by Citrus sinensis (Orange) and Assessing Activity Against Food Poisoning Microbes. Biomedical and Environmental Sciences, 27(10):815– 818.

Kelebek, H., Selli, S. 2011. Determination of Volatile, Phenolic, Organic Acid and Sugar Components in A Turkish cv. Dortyol (Citrus sinensis L. Osbeck) Orange Juice. Journal of the Science of Food and Agriculture, 91(10):1855–1862.

Favela-Hernández, JM., González- Santiago, O., Ramírez-Cabrera, MA., Esquivel-Ferriño, PC., Camacho- Corona Mdel, R. 2016. Chemistry and Pharmacology of Citrus sinensis. Molecules, 21(2):247.

Liew, SS., Ho, WY., Yeap, SK., Sharifudin, SAB. 2018. Phytochemical Composition and In Vitro Antioxidant Activities of Citrus sinensis Peel Extracts. PeerJ, 6(8):e5331.

Kaviya, S., Santhanalakshmi, J., Viswanathan, B., Muthumary, J., Srinivasan, K. 2011. Biosynthesis of Silver Nanoparticles Using Citrus sinensis Peel Extract and Its Antibacterial Activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(3):594–598.

Konwarh, R., Gogoi, B., Philip, R., Laskar, MA., Karak, N. 2011. Biomimetic Preparation of Polymer-Supported Free Radical Scavenging, Cytocompatible and Antimicrobial ‘Green’ Silver Nanoparticles Using Aqueous Extract of Citrus sinensis Peel. Colloids and Surfaces B: Biointerfaces, 84(2):338–345.

Annu., Ahmed, S., Kaur, G., Sharma, P., Singh, S., Ikram, S. 2018. Fruit Waste (Peel) as Bio-Reductant to Synthesize Silver Nanoparticles with Antimicrobial. Antioxidant and Cytotoxic Activities. Journal of Applied Biomedicine, 16(3):221–231.

Qin, Y., Ji, X., Jing, J., Liu, H., Wu, H., Yang, W. 2010. Size Control Over Spherical Silver Nanoparticles by Ascorbic Acid Reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 372(1–3):172–176.

Puišo, J., Jonkuvienė, D., Mačionienė, I., Šalomskienė, J., Jasutienė, I., Kondrotas,

R. 2014. Biosynthesis of Silver Nanoparticles Using Lingonberry and Cranberry Juices and Their Antimicrobial Activity. Colloids and Surfaces B: Biointerfaces, 121: 214–221.

Celano, R., Campone, L., Pagano, I., Carabetta, S., DiSanzo, R., Rastrelli, L., Piccinelli, AL., Russo, M. 2019. Characterisation of Nutraceutical Compounds from Different Parts of Particular Species of Citrus sinensis ‘Ovale Calabrese’ by UHPLC-UV-ESI-HRMS. Natural Product Research, 33(2):244–251.

Kahrilas, GA., Wally, LM., Fredrick, SJ., Hiskey, M., Prieto, AL., Owens, JE. 2014. Microwave-Assisted Green Synthesis of Silver Nanoparticles Using Orange Peel Extract. ACS Sustainable Chemistry & Engineering, 2(3):367–376.

Makarov, VV., Love, AJ., Sinitsyna, OV., Makarova, SS., Yaminsky, IV., Taliansky, ME., Kalinina, NO. 2014. "Green" Nanotechnologies: Synthesis of Metal Nanoparticles Using Plants. Acta Naturae, 6(1):35-44.

Aziz, SB., Hussein, G., Brza, MA., Mohammed, SJ., Abdulwahid, RT., Raza, SS., Hassanzadeh, A. 2019. Fabrication of Interconnected Plasmonic Spherical Silver Nanoparticles with Enhanced Localized Surface Plasmon Resonance (LSPR) Peaks Using Quince Leaf Extract Solution. Nanomaterials, 9(11):1557.

Kapešová, J., Petrásková, L., Markošová, K., Rebroš, M., Kotik, M., Bojarová, P., Křen, V. 2019. Bioproduction of Quercetin and Rutinose Catalyzed by Rutinosidase: Novel Concept of “Solid State Biocatalysis”. International Journal of Molecular Sciences, 20(5):1112.

Rai, M., Shegokar, R. 2017. Metal Nanoparticles in Pharma. Springer International Publishing.

Ridwan, RN., Gusrizal, G., Nurlina, N., Santosa, SJ. 2019. Sintesis dan Studi Stabilitas Nanopartikel Perak Tertudung Asam Salisilat. Indonesian Journal of Pure and Applied Chemistry, 1(3):83.

Kanchi, S., Ahmed, S. 2018. Green Metal Nanoparticles: Synthesis,Characterization and Their Applications. New Jersey: Wiley-Scrivener Publishing LLC.

Mogensen, KB., Kneipp, K. 2014. Size- Dependent Shifts of Plasmon Resonance in Silver Nanoparticle Films Using Controlled Dissolution: Monitoring The Onset of Surface Screening Effects. The Journal of Physical Chemistry C, 118(48):28075–28083.

Zhang, N., Yu, X., Hu, J., Xuea, F., Ding,

E. 2013. Synthesis of silver nanoparticle- coated poly-(styrene-co-sulfonic acid) hybrid materials and their application in surface-enhanced Raman scattering (SERS) tags. RSC Adv, (3):13740-13747.

Coates, R., Moran, J., Horsburgh, MJ. 2014. Staphylococci: Colonizers and Pathogens of Human Skin. Future Microbiology, 9(1):75–91.

Claudel, JP., Auffret, N., Leccia, MT., Poli, F., Corvec, S., Dréno, B. 2019. Staphylococcus epidermidis: A Potential New Player in The Physiopathology of Acne. Dermatology, 235(4):287-294.

González-Martín, M., Corbera, JA., Suárez-Bonnet, A., Tejedor-Junco, MT. 2020. Virulence Factors in Coagulase- Positive Staphylococci of Veterinary Interest other than Staphylococcus aureus The Veterinary Quarterly, 40(1):118–131.

Dreno, B., Martin, R., Moyal, D., Henley, JB., Khammari, A., Seité, S. 2017. Skin Microbiome and Acne Vulgaris: Staphylococcus. A New Actor in Acne, Exp Dermatol, 26(9):798-803.

Fauziah, AS., Ri., Hendriani, R. 2015. Tinjauan Aktivitas Antibakteri Ekstrak Cassia fistula Terhadap Staphylococcus aureus dan Escherichia coli: Artikel Review. Farmaka, 15(2):101–110.




DOI: https://doi.org/10.24198/ijpst.v1i1.29870

Refbacks

  • Saat ini tidak ada refbacks.


 Switch to English

Back to Top

View My Stats

Penerbit Universitas Padjadjaran

Jurnal ini terindeks di :

      

Creative Commons Attribution :

Creative Commons License
Indonesian Journal of Pharmaceutical Science and Technology by Universitas Padjadjaran is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Based on a work at http://jurnal.unpad.ac.id/ijpst/