Nano-extract of Acalypha hispida Increased Cu,Zn-SOD Antioxidant in Pancreas of Diabetic Rat
Abstrak
Nanotechnology has rapidly grown in various research fields to treat oxidative stress in diabetes,
including medicine and phytomedicine. Previous research showed that Acalypha hispida has strong
antioxidant activity in vitro and anti-hyperglycemic activity in vivo. However, the size reduction
in the crude extract should be applied to decrease the doses and increase the efficacy. The research
objective was to evaluate the nano-extract of A. hispida leaves on Cu,Zn-SOD antioxidant content in
the pancreas of diabetic rats. The analysis of Cu,Zn-SOD antioxidant content was carried out using
immunohistochemistry. Cu,Zn-SOD content of pancreas in diabetic rats (DMC) was significantly
lower than in normal rats (NLC). The antioxidant content of Cu,Zn-SOD in MET, CAH, NAH3, and
NAH6 groups was significantly higher than in the DMC group of the pancreas of diabetic rats. Nanoextract
of A. hispida showed a better effect in increasing Cu,Zn-SOD antioxidant content than crude
extract. The result concluded that nano-extract of A. hispida leaves increased Cu,Zn-SOD antioxidant
content in the pancreas of diabetic rats.
Kata Kunci
Teks Lengkap:
PDF (English)Referensi
Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules. 2020;25(1):1–15.
Kettler K, Veltman K, van de Meent D, van Wezel A, Hendriks AJ. Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environ Toxicol Chem. 2014;33(3):481–92.
Cheon J, Chan W, Zuhorn I. The Future of Nanotechnology: Cross-disciplined Progress to Improve Health and Medicine. Acc Chem Res. 2019;52(9):2405.
Alfarisi H, Sa’diah S, Wresdiyati T. Polyphenol Profile, Antioxidant and Hypoglycemic Activity of Acalypha hispida Leaf Extract. Indian J Pharm Sci. 2020;82(January):291–9.
Siraj MA, Shilpi JA, Hossain MG, Uddin SJ, Islam MK, Jahan IA, et al. Anti-inflammatory and antioxidant activity of Acalypha hispida leaf and analysis of its major bioactive polyphenols by HPLC. Adv Pharm Bull. 2016;6(2):275–83.
IDF [International Diabetes Federation]. IDF Diabetes Atlas Ninth Edition. International Diabetes Federation. 2019.
Kajimoto Y, Kaneto H. Role of oxidative stress in pancreatic β-cell dysfunction. Ann N Y Acad Sci. 2004;1011:168–76.
Lenzen S, Drinkgern J, Tiedge M. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med. 1996;20(3):463–6.
Wresdiyati T, Karmila A, Astawan M, Karnila R. Sea cucumber increased antioxidant superoxide dismutase in the pancreatic tissue of diabetic rats. J Vet. 2015;16(1):145–51.
Alfarisi H, Sadiah S, Juliandi B, Wresdiyati T. Preparation and characterization of nanopowder of Acalypha hispida Leaves Extract Using Planetary Ball Milling. Molekul. 2022;(In Press).
Wresdiyati T, Sinulingga TS, Zulfanedi Y. Effect of Mamordica charantia L. Powder on Antioxidant Superoxide Dismutase in Liver and Kidney of Diabetic Rats. HAYATI J Biosci. 2010;17(2):53–7.
Afolayan AJ, Sunmonu TO. Artemisia afra jacq. ameliorates oxidative stress in the pancreas of streptozotocin-induced diabetic wistar rats. Biosci Biotechnol Biochem. 2011;75(11):2083–6.
Wu J, Yan LJ. Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic β cell glucotoxicity. Diabetes, Metab Syndr Obes Targets Ther. 2015;8:181–8.
Eguchi N, Vaziri ND, Dafoe DC, Ichii H. The role of oxidative stress in pancreatic β cell dysfunction in diabetes. Int J Mol Sci. 2021;22(4):1–18.
Alnahdi A, John A, Raza H. N-acetyl cysteine attenuates oxidative stress and glutathione-dependent redox imbalance caused by high glucose/high palmitic acid treatment in pancreatic Rin-5F cells. PLoS One. 2019;14(12):1–20.
Stephenie S, Chang YP, Gnanasekaran A, Esa NM, Gnanaraj C. An insight on superoxide dismutase (SOD) from plants for mammalian health enhancement. J Funct Foods. 2020;68(November 2019):103917.
Gurgul-Convey E, Mehmeti I, Plötz T, Jörns A, Lenzen S. Sensitivity profile of the human EndoC-βH1 beta cell line to proinflammatory cytokines. Diabetologia. 2016;59:2125–33.
Wresdiyati T, Sa’diah S, Winarto A. The Antidiabetic Properties of Indonesian Swietenia mahagoni in Alloxan Induced-Diabetic-Rats. World Acad Sci Eng Technol Int J Anim Vet Sci. 2016;10(10):631–7.
Selmi S, Rtibi K, Grami D, Sebai H, Marzouki L. Rosemary (Rosmarinus officinalis) essential oil components exhibit anti-hyperglycemic, anti-hyperlipidemic and antioxidant effects in experimental diabetes. Pathophysiology. 2017;24(4):297–303.
Puiggròs F, Sala E, Vaque M, Ardevol A, Blay M, Fernández-Larrea J, et al. In vivo, in vitro, and in silico studies of CU/ZN-superoxide dismutase regulation by molecules in grape seed procyanidin extract. J Agric Food Chem. 2009;57(9):3934–42.
Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):1–17.
Mamillapalli V, Atmakuri AM, Khantamneni P. Nanoparticles for herbal extracts. Asian J Pharm. 2016;10(2):S54–60.
Zhao Y, Sun H, Li X, Zha Y, Hou W. Hydroxysafflor yellow A attenuates high glucose-induced pancreatic β-cells oxidative damage via inhibiting JNK/c-jun signaling pathway. Biochem Biophys Res Commun. 2018;505(2):353–9.
Wresdiyati T, Sa’diah S, Winarto A. The Antidiabetic Properties of Indonesian Swietenia mahagoni in Alloxan Induced-Diabetic-Rats. World Acad Sci Eng Technol Int J Anim Vet Sci.
;10(10):631–7.
Selmi S, Rtibi K, Grami D, Sebai H, Marzouki L. Rosemary (Rosmarinus officinalis) essential oil components exhibit anti-hyperglycemic, antihyperlipidemic and antioxidant effects in experimental diabetes. Pathophysiology
Alfarisi H, Wresdiyati T, Sadiah S, Juliandi B. Nanoextract of Acalypha hispida leaves increases antioxidant defense and suppresses microstructure damage in liver and kidney of diabetic
rats. J Appl Pharm Sci. 2022;12(10):99– 108.
Puiggròs F, Sala E, Vaque M, Ardevol A, Blay M, Fernández-Larrea J, et al. In vivo, in vitro, and in silico studies of CU/ZN-superoxide dismutase regulation by molecules in grape seed
procyanidin extract. J Agric Food Chem. 2009;57(9):3934–42.
Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):1–17.
Mamillapalli V, Atmakuri AM, Khantamneni P. Nanoparticles for herbal extracts. Asian J Pharm. 2016;10(2):S54–60.
Yu J, Zhao Y, Li B, Sun L, Huo H. 17β-Estradiol regulates the expression of antioxidant enzymes in myocardial cells by increasing Nrf2 translocation. J Biochem Mol Toxicol. 2012;26(7):264–9.
Lee JY, Mori C, Tokumoto M, Satoh M. Changes in dna-binding activity of transcription factors in the kidney of mice exposed to cadmium. J Toxicol Sci. 2021;46(3):125-9.
DOI: https://doi.org/10.24198/ijpst.v10i2.37981
Refbacks
- Saat ini tidak ada refbacks.
Switch to English Back to Top |
View My Stats Penerbit Universitas PadjadjaranJurnal ini terindeks di :Creative Commons Attribution :
Based on a work at http://jurnal.unpad.ac.id/ijpst/ |