Molecular Docking of Red Betel Leaf Bioactive Compounds (Piper crocatum) as Lipoxygenase Inhibitor

Fernanda Chairunisa, Mega Safithri, Dimas Andrianto, Rini Kurniasih, Riyan Alifbi Putera Irsal

Abstrak


Degenerative diseases occurred due to several risk factors that are directly related to inflammation
which affected several diseases such as coronary heart disease (CHD) and diabetes. One of the
inflammatory causative agents is leukotrienes produced by the lipoxygenase enzyme (LOX) so that
it takes anti-inflammatory drugs made from herbal plants. Red betel leaf (Piper crocatum) potentially
inhibited the lipoxygenase enzyme because it contains potential phytochemical compounds such
as alkaloids, flavonoids, eugenol, saponins, and tannins. This research aimed to test the inhibition
of active compounds from extract and fractions of red betel leaves that have the best inhibition for
lipoxygenase enzymes causing malondialdehyde formed through molecular docking simulations. This
research used lipoxygenase enzyme as receptor (PRB code: 4NRE), C8E as natural ligand and active
compound from extract and fractions of red betel leaves as a ligand. The highest inhibition regarded to
Nandrolone phenylpropionate and Sofalcone ligand with -10.4 kcal/mol and -9.1 kcal/mol of affinity
energy. Amino acid residues that played a role in ligand and receptor interaction were HIS373 and
HIS378. The receptor structure with the best ligands was declared stable based on molecular dynamics
simulations.


Kata Kunci


Inflammation, Lipoxygenase, Molekular docking, Red betel leaf

Teks Lengkap:

PDF

Referensi


[WHO] World Health Organization. Noncommunicable disease. [diacu 2022 Maret 21]. Tersedia dari: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases

Yuslianti ER. Pengantar radikal bebas dan antioksidan. Yogyakarta: Deepublish. 2018

Kementerian Kesehatan Republik Indonesia. 2013. Situasi kesehatan jantung [internet]. [diunduh 2022 Maret 22]. Tersedia dari https://pusdatin.kemkes.go.id.

Kementerian Kesehatan Republik Indonesia. 2013. Tetap produktif, cegah, dan atasi diabetes melitus [internet]. [diunduh 2022 Maret 22]. Tersedia dari https://pusdatin.kemkes.go.id.

Fanelli A, Ghisi D, Aprile PL, Lapi F. Cardiovascular and cerebrovascular risk with nonsteroidal anti-inflammatory drugs and cyclooxygenase 2 inhibitors: latest evidence and clinical implications. Ther. Adv. Drug. Saf. 2017;8(6): 173-182.

Lončarić M, Strelec I, Pavić V, Šubarić D, Rastija V, Molnar M. Lipoxygenase inhibition activity of coumarin derivatives qsar and molecular docking study. Pharmaceuticals. 2020; 13(154): 1-19.

Tomy MJ, Dileep KV, Prasanth S, Preethidan DS, Sabu A, Sadasivan C, Haridas M. Cuminaldehyde as a lipoxygenase inhibitor:in vitro and in silico validation. Appl Biochem Biotechnol. 2014; 174:388–397.

Safithri M, Kurniawati A, Syaefudin. Formula of Piper crocatum, Cinnamomum burmanii, and Zingiber officinale extracts as a functional beverage for diabetics. IFRJ. 2016; 23(3):1123-1130.

Prayitno SA, Kusnadi J, Murtin ES. Karakteristik (total flavonoid, total fenol, aktivitas antioksidan) ekstrak serbuk daun sirih merah (Piper crocatum Ruiz & Pav.). Foodscitech. 2018; 1(2): 26-34.

Weni M, Safithri M, Seno DSH. Molecular docking of active compounds piper crocatum on the alpha-glucosidase enzyme as antidiabetic. IJPST. 2020; 7(2):1-9.

Zaelani BFD, Safithri M, Andrianto D. Molecular docking of red betel (Piper crocatum Ruiz & Pav) bioactive compounds as HMG-CoA reductase inhibitor. Jurnal Kimia Sains dan Aplikasi. 2021; 24(3):101-107.

Afifah S, Lukiati B, Maslikah SI. The potentials of red betel (Piper crocatum Ruiz & Pav) terpenoid compounds as Microsomal Prostaglandin E Synthase-1 (mPGES-1) enzyme inhibitor of rheumatoid arthritis through virtual screening. Proceedings of The 3rd International Seminar on Metallurgy and Materials (ISMM2019): Exploring New Innovation in Metallurgy and Materials; 22 April 2020; AIP Conference Proceedings 2231; 2020

Amalia A, Maslikah SI, Lestari SR. Virtual screening flavonoid compounds from red betel (Piper crocatum Ruiz & Pav.) as inhibitor of cyclooxygenase-2 (COX-2). Proceedings of The 3rd International Seminar on Metallurgy and Materials (ISMM2019): Exploring New Innovation in Metallurgy and Materials; 22 April 2020; AIP Conference Proceedings 2231; 2020

Anugrahwati M, Purwaningsih T, Rustina, Manggalarini JA, Alnavis NB, Wulandari DN, Pranowo HD. Extraction of ethanolic extract of red betel leaves and its cytotoxicity test on HeLa cells. Procedia Engineering. 2016; 148(2016): 1402-1407.

Wahjuni S, Sukadana IM, Arisanti LP. Red Piper crocatum leaves extract ethanol lowering malondialdehyde (mda) and blood glucose level in hyperglycemic wistar rat. Jurnal of Global Pharma Technology. 2017; 5(9):59-64.

Irawan C, Foliatini, Hanafi. GC-MS composition of leaf extract of Piper cf. arcuatum blume and their antioxidant activity and toxicity studies. Journal of Pharmacognosy and Phytochemistry. 2015; 6(4): 461-468.

Ramadani F. Aktivitas antioksidan, total tanin ekstrak dan fraksi daun sirih merah (Piper crocatum) dan identifikasi dengan LC-MS (skripsi). Bogor: Institut Pertanian Bogor; 2018

Wedaswari IAI. Aktivitas ekstrak etanol dan fraksi daun sirih merah (Piper crocatum) dengan metode rancimat dan identifikasi dengan LC-MS (skripsi). Bogor: Institut Pertanian Bogor; 2018

Septiani R. Ekstrak dan fraksi daun sirih merah (Piper crocatum Ruiz & Pav) sebagai antioksidan dengan metode 2,2-difenil-1-pikrilhidrazil (skripsi). Bogor: Institut Pertanian Bogor; 2017

Safithri M, Kurniawati A, Syaefudin. Formula of Piper crocatum, Cinnamomum burmanii, and Zingiber officinale extracts as a functional beverage for diabetics. IFRJ. 2016;23(3): 1123-1130.

(Lukitaningsih E, Mustikawaty AA, Sudarmanto A. Homology modeling dan molecular docking senyawa aktif dari bengkoang (Pachyrrhizus erosus) sebagai inhibitor tyrosinase pada Homo sapiens. Jurnal. Ilmu Kefarmasian Indonesia. 2013; 11(2):134-141.

Gaffar S, Masyhuri AA, Hartati YW, Rustaman. Studi in silico single chain variable fragment (SCFV) selektif terhadap hormon basic natriuretic peptide (BNP). Chimica et Natura Acta. 2016; 4(2): 52-59.

Shivanuka C, Deepak KS, Venkataraghavan R, Pawan T, Sumitha A, Brindha DP. Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. Journal of Biomolecular Structure and Dynamics.2020; 1:1–27.

Ramírez D, Caballero J. Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data? Molecules. 2018; 23(5):1-17.

Benet LZ, Hosey CM, Ursu O, Oprea TIBDDCS. the Rule of 5 and Drug ability. Adv. Drug Deliv. Rev. 2016; 2016:1-10.

Ruswanto. Molecular docking empat turunan isonicotinnohydrazide pada Mycobacterium tuberculosis enoyl-acyl carrier protein reductase (InhA). Jurnal Kesehatan Bakti Tunas Husada. 2015; 13(1): 135-141.

Syahputra G, Ambarsari L, Sumaryada T. Simulasi docking kurkumin enol, bisdemetoksikurkumin dan analognya sebagai inhibitor enzim 12- lipoksigenase. J. Biofisika. 2014; 10(1): 55-67.

Halligudi N, Mullaicharam AR, Al-bahri HS. Molecular modification of ibuprofen using in silico modeling system. Int. J. Nutr. Pharmacol. Neurol. Dis. 2022; 2(2):156-162.

Daddam JR, Sreenivasulu B, Peddanna K, Umamahesh K. Designing, docking and molecular dynamics simulation studies of novel cloperastine analogues as anti-allergic agents: homology modeling and active site prediction for the human histamine H1 receptor. RSC Advances. 2020; 10(8):4745–4754.

Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods in Molecular Biology (Clifton, N.J). 2015; 1263:243-250.

Ramsay RR, Tipton KF. Assessment of enzyme inhibition: a review with examples from the development of monoamine oxidase and cholinesterase inhibitory drugs. Molecules. 2017; 22(7): 1-46.

Sun R, XU G, Dongyang G, Ding Q, Shi Y. 2021. To predict anti-inflammatory and immunomodulatory targets of guizhi decoction in treating asthma based on network pharmacology, molecular docking, and experimental validation. Hindawi. 2021; 2021:1-17.

Kobe MJ, Neau DB, Mitchell CE, Bartlett SG, Newcomer ME. The structure of human 15-lipoxygenase-2 with a substrate mimic. Journal of Biological Chemistry. 2014; 289(12): 8562–8569.

Dutta M, Tareq AM, Rakib A, Mahmud S, Sami SA, Mallick J, Islam MN, Majumder M, Uddin MZ, Alsubaie A, et al. Phytochemicals from Leucas zeylanica targeting main protease of SARS-CoV-2: chemical profiles, molecular docking, and molecular dynamics simulations. Biology. 2021; 10(789): 1-19.

Liu K, Watanabe1 E, Kokubo H. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations. J Comput Aided Mol Des. 2017; 31: 201-211.

Dash R, Ali MC, Dash N, Azad MAK, Hosen SMZ, Hannan MA, Moon IS. Structural and dynamic characterizations highlight the deleterious role of SULT1A1 R213H polymorphism in substrate binding. Int. J. Mol. Sci. 2019; 20(6256): 1-22

Ali SA, Hassan MD, Islam A, Ahmad F. A review of methods available to estimatesolvent-accessible surface areas of soluble proteins in the folded and unfolded states. Current Protein and Peptide Science. 2014; 15(3): 1-21.

Biswas S, Mahmud S, Mita MA, Afrose S, Hasan MR, Shimu MSS, Saleh MA, Mostafa-Hedeab G, Alqarni A, Obaidullah AJ et al. Molecular docking and dynamics studies to explore effective inhibitory peptides against the spike receptor binding domain of SARS-CoV-2. Front. Mol. Biosci. 2012; 8(791642): 1-10.




DOI: https://doi.org/10.24198/ijpst.v10i2.38934

Refbacks

  • Saat ini tidak ada refbacks.


 Switch to English

Back to Top

View My Stats

Penerbit Universitas Padjadjaran

Jurnal ini terindeks di :

      

Creative Commons Attribution :

Creative Commons License
Indonesian Journal of Pharmaceutical Science and Technology by Universitas Padjadjaran is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Based on a work at http://jurnal.unpad.ac.id/ijpst/