Formulasi dan Karakterisasi Nanopartikel Supernatan Bacillus subtilis dengan Poly Lactic-co-Glycolic Acid (PLGA)

Dhadhang Wahyu Kurniawan, Alfia Nayudia Farahnida, Uyi Sulaeman

Abstrak


Pemanfaatan supernatan Bacillus subtilis kini telah banyak dimanfaatkan dalam bidang kesehatan sebagai probiotik karena mengandung senyawa bakteriosin serta enzim enzim. Senyawa tersebut mampu menghambat mikroorganisme lain dan mudah terdegradasi oleh enzim proteolitik. Pemanfaatan nanopartikel polimer cukup efektif untuk melindungi probiotik dari kondisi gastrointestinal. Penelitian ini bertujuan untuk membuat sediaan nanopartikel supernatan B. subtilis dengan pembawa PLGA dan dilakukan karakterisasi. Nanopartikel dibuat dengan metode solvent evaporation menggunakan variasi konsentrasi PLGA. Hasil karakterisasi nanopartikel supernatan B. subtilis memiliki ukuran nanopartikel 545,45 ± 90,73 nm dengan nilai indeks polidispersitas (PDI) kategori monodisperisi yaitu 0,503 ± 0,065 dan zeta potensial -14,57 ± 3,08 mV. Morfologi yang dihasilkan berbentuk sferis dan cukup seragam. Analisis Fourier transform infrared spectroscopy (FTIR) menunjukkan pita-pita spektrum mirip dengan nanopartikel PLGA dan menunjukkan beberapa puncak spesifik supernatan B. subtilis dengan sedikit pergeseran. Analisis Differential Scanning Calorimetry (DSC) pada termogram tidak menunjukkan adanya puncak endotermik dari supernatan B. subtilis. Formulasi nanopartikel supernatan B. subtilis telah ter-loading-kan ke dalam sistem nanopartikel melalui analisis FTIR dan DSC.


Kata Kunci


nanopartikel; supernatan; Bacillus subtilis; PLGA

Teks Lengkap:

PDF

Referensi


Tavares Batista M, Souza RD, Paccez JD, Luiz WB, Ferreira EL, Cavalcante RCM, et al. Gut adhesive Bacillus subtilis spores as a platform for mucosal delivery of antigens. Infect Immun. 2014;82(4):1414–23.

Ramachandran R, Chalasani AG, Lal R, Roy U. A broad-spectrum antimicrobial activity of Bacillus subtilis RLID 12.1. Sci world J. 2014;2014.

Tazehabadi MH, Algburi A, Popov I V, Ermakov AM, Chistyakov VA, Prazdnova E V, et al. Probiotic Bacilli inhibit Salmonella biofilm formation without killing planktonic cells. Front Microbiol. 2021;12:242.

Awais M, Pervez A, Yaqub A, Shah MM. Production of antimicrobial metabolites by Bacillus subtilis immobilized in polyacrylamide gel. Pak J Zool. 2010;42(3).

Benítez-Chao DF, León-Buitimea A, Lerma-Escalera JA, Morones-Ramírez JR. Bacteriocins: An Overview of Antimicrobial, Toxicity, and Biosafety Assessment by in vivo Models. Front Microbiol. 2021;12:677.

Fernandez B, Le Lay C, Jean J, Fliss I. Growth, acid production and bacteriocin production by probiotic candidates under simulated colonic conditions. J Appl Microbiol. 2013;114(3):877–85.

Gomaa AI, Martinent C, Hammami R, Fliss I, Subirade M. Dual coating of liposomes as encapsulating matrix of antimicrobial peptides: development and characterization. Front Chem. 2017;5:103.

Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel). 2011;3(3):1377–97.

Kurniawan DW, Jajoriya AK, Dhawan G, Mishra D, Argemi J, Bataller R, et al. Therapeutic inhibition of spleen tyrosine kinase in inflammatory macrophages using PLGA nanoparticles for the treatment of non-alcoholic steatohepatitis. J Control release. 2018;288:227–38.

Crucho CIC, Barros MT. Formulation of functionalized PLGA polymeric nanoparticles for targeted drug delivery. Polymer (Guildf). 2015;68:41–6.

Sonkambale KG, Katedeshmukh RG, Kumbhar AB, Mane S V, Pawar PA, Kadam JN, et al. Formulation and evaluation of nanosuspension for enhancing the solubility of poorly soluble Antihyperlipidemic Drugs. Eur J Mol Clin Med. 2021;8(3).

Kurniawan DW, Booijink R, Pater L, Wols I, Vrynas A, Storm G, et al. Fibroblast growth factor 2 conjugated superparamagnetic iron oxide nanoparticles (FGF2-SPIONs) ameliorate hepatic stellate cells activation in vitro and acute liver injury in vivo. J Control Release. 2020;328(September):640–52.

Pacho MN, Pugni EN, Díaz Sierra JB, Morell ML, Sepúlveda CS, Damonte EB, et al. Antiviral activity against Zika virus of a new formulation of curcumin in poly lactic-co-glycolic acid nanoparticles. J Pharm Pharmacol. 2021;73(3):357–65.

Wong CY, Martinez J, Zhao J, Al-Salami H, Dass CR. Development of orally administered insulin-loaded polymeric-oligonucleotide nanoparticles: statistical optimization and physicochemical characterization. Drug Dev Ind Pharm. 2020;46(8):1238–52.

Majumder S, Das NSS, Pandey N, Srivastava T, Ghosha D. Synthesis, characterization of novel PLGA encapsulated indole nanoparticles and study of its cytotoxic potential against A549 lung cancer cell line. J Appl Pharm Sci. 2018;8(08):144–50.

Hu F, Liu W, Yan L, Kong F, Wei K. Optimization and characterization of poly (lactic-co-glycolic acid) nanoparticles loaded with astaxanthin and evaluation of anti-photodamage effect in vitro. R Soc open Sci. 2019;6(10):191184.

Anwer MK, Al-Mansoor MA, Jamil S, Al-Shdefat R, Ansari MN, Shakeel F. Development and evaluation of PLGA polymer based nanoparticles of quercetin. Int J Biol Macromol. 2016;92:213–9.

Raina D, Madhav S. An Innovative Approach for Delivery of Nanosized Duloxetine Via External Acoustic Meatus (EAM) Platform. Gazi Med J. 2017;28(4).

Luhurningtyas FP, Vifta RL, Syarohmawati N, Candra MA. CHOLESTEROL LOWERING EFFECT OF CHITOSAN NANOPARTICLES USING PARIJOTO FRUITS EXTRACT. J Farm Sains dan Komunitas (Journal Pharm Sci Community). 2020;17(2):102–11.

Koopaei MN, Khoshayand MR, Mostafavi SH, Amini M, Khorramizadeh MR, Tehrani MJ, et al. Docetaxel loaded PEG-PLGA nanoparticles: optimized drug loading, in-vitro cytotoxicity and in-vivo antitumor effect. Iran J Pharm Res IJPR. 2014;13(3):819.

Chen X, Wang T. Preparation and characterization of atrazine-loaded biodegradable PLGA nanospheres. J Integr Agric. 2019;18(5):1035–41.

Heshmati Aghda N, Lara EJ, Patel P, Betancourt T. High Throughput Preparation of Poly (Lactic-Co-Glycolic Acid) Nanoparticles Using Fiber Fluidic Reactor. Materials (Basel). 2020;13(14):3075.

Hernández-Giottonini KY, Rodríguez-Córdova RJ, Gutiérrez-Valenzuela CA, Peñuñuri-Miranda O, Zavala-Rivera P, Guerrero-Germán P, et al. PLGA nanoparticle preparations by emulsification and nanoprecipitation techniques: Effects of formulation parameters. RSC Adv. 2020;10(8):4218–31.

Masarudin MJ, Cutts SM, Pietersz GA, Evison BJ, Phillips DR, Pigram PJ. Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: Application to the passive encapsulation of [(14) C]-doxorubicin. Nanotechnol Sci Appl. 2016;9:47.

Singhal M, Baumgartner A, Turunen E, van Veen B, Hirvonen J, Peltonen L. Nanosuspensions of a poorly soluble investigational molecule ODM-106: Impact of milling bead diameter and stabilizer concentration. Int J Pharm. 2020;587:119636.

Mittal P, Vardhan H, Ajmal G, Bonde GV, Kapoor R, Mittal A, et al. Formulation, optimization, hemocompatibility and pharmacokinetic evaluation of PLGA nanoparticles containing paclitaxel. Drug Dev Ind Pharm. 2019;45(3):365–78.

Soltani S, Zakeri-Milani P, Barzegar-Jalali M, Jelvehgari M. Fabrication and in-vitro evaluation of ketotifen fumarate-loaded PLGA nanoparticles as a sustained delivery system. Iran J Pharm Res IJPR. 2017;16(1):22.

Servat-Medina L, González-Gómez A, Reyes-Ortega F, Sousa IMO, Queiroz N de CA, Zago PMW, et al. Chitosan–tripolyphosphate nanoparticles as Arrabidaea chica standardized extract carrier: Synthesis, characterization, biocompatibility, and antiulcerogenic activity. Int J Nanomedicine. 2015;10:3897.

Gaonkar RH, Ganguly S, Dewanjee S, Sinha S, Gupta A, Ganguly S, et al. Garcinol loaded vitamin E TPGS emulsified PLGA nanoparticles: preparation, physicochemical characterization, in vitro and in vivo studies. Sci Rep. 2017;7(1):1–14.

Prihatiningsih N, Djatmiko HA. Enzim Amilase sebagai komponen antagonis Bacillus subtilis B315 terhadap Ralstonia solanacearum kentang. J Hama dan Penyakit Tumbuh Trop. 2016;16(1):10–6.

Singh G, Kaur T, Kaur R, Kaur A. Recent biomedical applications and patents on biodegradable polymer-PLGA. Int J Pharmacol Pharm Sci. 2014;1(2):30–42.

Singh G, Faruk A, Bedi PMS. Spectral analysis of drug loaded nanoparticles for drug-polymer interactions. J Drug Deliv Ther. 2018;8(6):111–8.

Alam N, Qayum A, Kumar A, Khare V, Sharma PR, Andotra SS, et al. Improved efficacy of cisplatin in combination with a nano-formulation of pentacyclic triterpenediol. Mater Sci Eng C. 2016;68:109–16.

Mohanty S, Konkimalla VB, Pal A, Sharma T, Si SC. Naringin as Sustained Delivery Nanoparticles Ameliorates the Anti-inflammatory Activity in a Freund’s Complete Adjuvant-Induced Arthritis Model. ACS omega. 2021;6(43):28630–41.

Mollaeva MR, Yabbarov N, Sokol M, Chirkina M, Mollaev MD, Zabolotskii A, et al. Optimization, Characterization and Pharmacokinetic Study of Meso-Tetraphenylporphyrin Metal Complex-Loaded PLGA Nanoparticles. Int J Mol Sci. 2021;22(22):12261.

Ansari MJ, Alshahrani SM. Nano-encapsulation and characterization of baricitinib using poly-lactic-glycolic acid co-polymer. Saudi Pharm J. 2019;27(4):491–501.




DOI: https://doi.org/10.24198/ijpst.v11i3.46594

Refbacks

  • Saat ini tidak ada refbacks.


 Switch to English

Back to Top

View My Stats

Penerbit Universitas Padjadjaran

Jurnal ini terindeks di :

      

Creative Commons Attribution :

Creative Commons License
Indonesian Journal of Pharmaceutical Science and Technology by Universitas Padjadjaran is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Based on a work at http://jurnal.unpad.ac.id/ijpst/