Machine Learning Based QSAR Model for Screening PPAR-gamma Stimulator
Abstrak
Type-2 diabetes (DM2) is still growing into a global problem. Decreased insulin sensitivity is the main mechanism causing DM2. PPAR-gamma has been shown to have a direct relationship with insulin sensitivity. This study aimed to develop a machine-learning model to evaluate phytochemical compounds’ activity as a PPAR-gamma agonist. The dataset used for modeling was procured from the ChEMBL database. A total of 3668 substances were retained after null and duplicate values were removed. Canonical SMILES were collected and described to generate an extended connectivity fingerprint, which was then used to predict the pEC50 value. The machine learning-generated model was then used to predict 2846 phytochemical compounds from the KEGG database. This study uses the Light gradient-based machine learning method. The performance of the model was evaluated using Root Mean Square Error (RMSE) and R-square (R2) of 0.63 and 0.73, respectively. Afterward, the model was used to predict phytochemical compounds. Five compounds with the lowest EC50 were obtained: Pedilstatin (60.05 nM), Gnididin (64.29 nM), Paclitaxel (98.93 nM), Vincristine (113.9 nM), and Camellidin II (129.72 nM). Further research regarding the direct effect of PPAR-gamma needs to be tested on these five compounds. Machine learning models will save time and resources for drug discovery or repurposing previously used drugs.
Kata Kunci
Teks Lengkap:
PDFReferensi
Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022 Jan;183:109119.
Kemenkes RI. Hasil Riset Kesehatan Dasar Tahun 2018. Kementrian Kesehatan RI. 2018;53(9):1689–99.
Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, et al. Pathophysiology of Type 2 Diabetes Mellitus. Int J Mol Sci. 2020 Aug 30;21(17):6275.
Czech MP. Insulin action and resistance in obesity and type 2 diabetes. Nat Med. 2017 Jul 1;23(7):804–14.
Rorsman P, Ashcroft FM. PANCREATIC-CELL ELECTRICAL ACTIVITY AND INSULIN SECRETION: OF MICE AND MEN. Physiol Rev [Internet]. 2018;98:117–214. Available from: www.prv.org
Yang Q, Vijayakumar A, Kahn BB. Metabolites as regulators of insulin sensitivity and metabolism. Vol. 19, Nature Reviews Molecular Cell Biology. Nature Publishing Group; 2018. p. 654–72.
Gharge S, Alegaon SG, Ranade SD, Kavalapure RS, Prashantha Kumar BR, Mhaske PC. Expression of PPAR-γ TF by newly synthesized thiazolidine-2,4-diones to manage glycemic control: Insights from in silico, in vitro and experimental pharmacology in wistar rats. Bioorg Chem. 2024 Dec;153:107966.
Montaigne D, Butruille L, Staels B. PPAR control of metabolism and cardiovascular functions. Nat Rev Cardiol. 2021 Dec 14;18(12):809–23.
Jain N, Bhansali S, Kurpad A V., Hawkins M, Sharma A, Kaur S, et al. Effect of a Dual PPAR α/γ agonist on Insulin Sensitivity in Patients of Type 2 Diabetes with Hypertriglyceridemia- Randomized double-blind placebo-controlled trial. Sci Rep. 2019 Dec 12;9(1):19017.
Basak S, Murmu A, Matore BW, Roy PP, Singh J. Thiazolidinedione an auspicious scaffold as PPAR-γ agonist: its possible mechanism to Manoeuvre against insulin resistant diabetes mellitus. European Journal of Medicinal Chemistry Reports. 2024 Aug;11:100160.
Davidson MA, Mattison DR, Azoulay L, Krewski D. Thiazolidinedione drugs in the treatment of type 2 diabetes mellitus: past, present and future. Vol. 48, Critical Reviews in Toxicology. Taylor and Francis Ltd; 2018. p. 52–108.
Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M, et al. QSAR Modeling: Where Have You Been? Where Are You Going To? J Med Chem. 2014 Jun 26;57(12):4977–5010.
Rastogi A, Dunbar RL, Thacker HP, Bhatt J, Parmar K, Parmar D v. Abrogation of postprandial triglyceridemia with dual PPAR α/γ agonist in type 2 diabetes mellitus: a randomized, placebo-controlled study. Acta Diabetol. 2020 Jul 6;57(7):809–18.
Lefere S, Puengel T, Hundertmark J, Penners C, Frank AK, Guillot A, et al. Differential effects of selective- and pan-PPAR agonists on experimental steatohepatitis and hepatic macrophages☆. J Hepatol. 2020 Oct;73(4):757–70.
Chen T, Zhang Y, Liu Y, Zhu D, Yu J, Li G, et al. MiR-27a promotes insulin resistance and mediates glucose metabolism by targeting PPAR-γ-mediated PI3K/AKT signaling. Aging. 2019 Sep 28;11(18):7510–24.
Carracedo-Reboredo P, Liñares-Blanco J, Rodríguez-Fernández N, Cedrón F, Novoa FJ, Carballal A, et al. A review on machine learning approaches and trends in drug discovery. Comput Struct Biotechnol J. 2021;19:4538–58.
Davies M, Nowotka M, Papadatos G, Dedman N, Gaulton A, Atkinson F, et al. ChEMBL web services: Streamlining access to drug discovery data and utilities. Nucleic Acids Res. 2015;43(W1):W612–20.
Rogers D, Hahn M. Extended-Connectivity Fingerprints. J Chem Inf Model. 2010 May 24;50(5):742–54.
Landrum G, Tosco P, Kelley B, Ric, sriniker, gedeck, et al. rdkit/rdkit: 2021_03_5 (Q1 2021) Release. 2021 Aug 24 [cited 2023 Feb 6]; Available from: https://zenodo.org/record/5242603
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44(D1):D457–62.
Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes [Internet]. Vol. 28, Nucleic Acids Research. 2000. Available from: http://www.genome.ad.jp/kegg/
Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, et al. LightGBM: A Highly Efficient Gradient Boosting Decision Tree [Internet]. Available from: https://github.com/Microsoft/LightGBM.
Wu Z, Zhu M, Kang Y, Leung ELH, Lei T, Shen C, et al. Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets. Brief Bioinform. 2021 Jul 1;22(4).
Pettit GR, Ducki S, Tan R, Gardella RS, McMahon JB, Boyd MR, et al. Isolation and structure of pedilstatin from a Republic of Maldives Pedilanthus sp. J Nat Prod. 2002 Sep 1;65(9):1262–5.
Isakov N. Protein kinase C (PKC) isoforms in cancer, tumor promotion and tumor suppression. Semin Cancer Biol. 2018 Feb;48:36–52.
Kupchan SM, Sweeny JG, Baxter RL, Murae T, Zimmerly VA, Sickles BR. Tumor inhibitors. 102. Gnididin, gniditrin, gnidicin, novel potent antileukemic diterpenoid esters from Gnidia lamprantha. J Am Chem Soc. 1975 Feb 1;97(3):672–3.
Yoshimitsu Nagao, Masahito Ochiai. Design and Study of New Tumor Inhibitors. Bull Inst Chem Res Kyoto Univ [Internet]. 1985 Aug 24 [cited 2023 Apr 22];63(2):132–55. Available from: http://hdl.handle.net/2433/77099
Kuriakose GC, Arathi BP, Divya Lakshmanan M, Jiby M V., Gudde RS, Jayabhaskaran C. Sub-acute Toxicity Assessment of Taxol Isolated From Fusarium Solani, an Endophytic Fungus of Taxus Brevifolia, in Wistar Rats and Analyzing Its Cytotoxicity and Apoptotic Potential in Lung Cancer Cells. Front Oncol. 2020 Oct 6;10.
Abu Samaan TM, Samec M, Liskova A, Kubatka P, Büsselberg D. Paclitaxel’s Mechanistic and Clinical Effects on Breast Cancer. Biomolecules. 2019 Nov 27;9(12):789.
Silverman JA, Deitcher SR. Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother Pharmacol. 2013 Mar 5;71(3):555–64.
Škubník J, Pavlíčková VS, Ruml T, Rimpelová S. Vincristine in Combination Therapy of Cancer: Emerging Trends in Clinics. Biology (Basel). 2021 Aug 31;10(9):849.
Jin X, Liu K, Jiao B, Wang X, Huang S, Ren W, et al. Vincristine promotes migration and invasion of colorectal cancer HCT116 cells through RhoA/ROCK/ Myosin light chain pathway. Cell Mol Biol (Noisy-le-grand). 2016 Oct 31;62(12):91–6.
Wang HY, Zhang Y, Zhou Y, Lu YY, Wang WF, Xin M, et al. Rosiglitazone elevates sensitization of drug-resistant oral epidermoid carcinoma cells to vincristine by G2/M-phase arrest, independent of PPAR-γ pathway. Biomedicine and Pharmacotherapy. 2016 Oct 1;83:349–61.
NAGATA T, TSUSHIDA T, HAMAYA E, ENOKI N, MANABE S, NISHINO C. Camellidins, antifungal saponins isolated from Camellia japonica. Agric Biol Chem. 1985;49(4):1181–6.
Qin Z, Yan A. QSAR studies on hepatitis C virus NS5A protein tetracyclic inhibitors in wild type and mutants by CoMFA and CoMSIA. SAR QSAR Environ Res. 2020 Apr 2;31(4):281–311.
Huiying Z, Guangying C, Shiyang Z. Design, synthesis and biological activity evaluation of a new class of 2,4-thiazolidinedione compounds as insulin enhancers. J Enzyme Inhib Med Chem. 2019 Jan 1;34(1):981–9.
Augimeri G, Bonofiglio D. PPARgamma: A Potential Intrinsic and Extrinsic Molecular Target for Breast Cancer Therapy. Biomedicines. 2021 May 13;9(5):543.
Wagner N, Wagner KD. Peroxisome Proliferator-Activated Receptors and the Hallmarks of Cancer. Cells. 2022 Aug 5;11(15):2432.
Wagner N, Wagner KD. PPARs and Angiogenesis—Implications in Pathology. Int J Mol Sci. 2020 Aug 10;21(16):5723.
Basilotta R, Lanza M, Casili G, Chisari G, Munao S, Colarossi L, et al. Potential Therapeutic Effects of PPAR Ligands in Glioblastoma. Cells. 2022 Feb 10;11(4):621.
Cheng HS, Yip YS, Lim EKY, Wahli W, Tan NS. PPARs and Tumor Microenvironment: The Emerging Roles of the Metabolic Master Regulators in Tumor Stromal–Epithelial Crosstalk and Carcinogenesis. Cancers (Basel). 2021 Apr 29;13(9):2153.
Ballav S, Biswas B, Sahu VK, Ranjan A, Basu S. PPAR-γ Partial Agonists in Disease-Fate Decision with Special Reference to Cancer. Vol. 11, Cells. MDPI; 2022.
Vella V, Nicolosi ML, Giuliano S, Bellomo M, Belfiore A, Malaguarnera R. PPAR-γ Agonists As Antineoplastic Agents in Cancers with Dysregulated IGF Axis. Front Endocrinol (Lausanne). 2017 Feb 22;8.
Chi T, Wang M, Wang X, Yang K, Xie F, Liao Z, et al. PPAR-γ Modulators as Current and Potential Cancer Treatments. Front Oncol. 2021 Sep 23;11.
DOI: https://doi.org/10.24198/ijpst.v12i3.46916
Refbacks
- Saat ini tidak ada refbacks.
| Switch to English Back to Top |
| View My Stats Penerbit Universitas Padjadjaran
Jurnal ini terindeks di :Creative Commons Attribution :
Based on a work at http://jurnal.unpad.ac.id/ijpst/ |
Indonesian Journal of Pharmaceutical Science and Technology




