The Binding Mode and Molecular Dynamics of Epigallocatechin and Epigallocatechin Gallate with Human Superoxide Dismutase 1 in Complex with a Naphthalene-Catechol Linked Compound

Jutti Levita, Lidya Cahyo Bawono, Miski Aghnia Khairinisa, Supat Jiranusornkul, Sandra Megantara, Muhammad Ikhsan

Abstrak


Superoxide dismutases (SODs) are metalloenzymes that defend the body against reactive oxygen species and contribute to combating inflammation. Human cells have three distinct SODs, i.e., manganese SOD (MnSOD), extracellular SOD(ECSOD), and copper-zinc SOD (Cu-ZnSOD) or SOD1. The crystal structure of human SOD1 in a complex with a naphthalene-catechol-linked compound revealed hydrogen bonds and hydrophobic interaction. Catechins arepolyhydroxylated polyphenols contained in the leaves of Camellia sinensis L. This work aims to study the binding mode and molecular dynamics of two major catechins, epigallocatechin (EGC) and epigallocatechin gallate (EGCG) with human SOD1 (in complex with SBL1, a naphthalene-catechol linked compound). Both catechins demonstrated a binding mode with the enzyme, in terms of hydrogen bonds and hydrophobic interaction, similar to the native ligand (SBL1). Of the two catechins, EGC possesses a better binding affinity (docking score of -4.15 kcal/mol) for human SOD1 compared to EGCG (docking score of -4.02 kcal/mol), thus the EGC-SOD1 complex was continued in MD simulation to investigate the conformational stability and time-dependent ligand binding ability in the binding pocket. The molecular dynamics simulation confirmed that EGC is more stable than the native ligand, SBL1, with the RMSD average value of SBL1 and EGC being 1.1669 Å and 0.5607 Å, respectively. Taken together, this study confirms the antioxidant activity of catechins in C. sinensis L.


Kata Kunci


antioxidants, catechins, oxidative stress, reactive oxygen species, superoxide dismutase

Teks Lengkap:

PDF (English)

Referensi


Fukai T, Ushio-Fukai M. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal. 2011;15(6):1583-606.

Manjula R, Wright GSA, Strange RW, Padmanabhan B. Assessment of ligand binding at a site relevant to SOD1 oxidation and aggregation. FEBS Lett. 2018;592(10):1725-1737.

Bosco DA, Morfini G, Karabacak NM, Song Y, Gros-Louis F, Pasinelli P, Goolsby H, Fontaine BA, Lemay N, McKenna-Yasek D et al. Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nat Neurosci. 2010;13:1396–13403.

Fujiwara N, Nakano M, Kato S, Yoshihara D, Ookawara T, Eguchi H, Taniguchi N and Suzuki K. Oxidative modification to cysteine sulfonic acid of Cys111 in human copper-zinc superoxide dismutase. J Biol Chem. 2007;282: 35933–35944.

Taylor DM, Gibbs BF, Kabashi E, Minotti S, Durham HD, Agar JN. Tryptophan 32 potentiates aggregation and cytotoxicity of a copper/zinc superoxide dismutase mutant associated with familial amyotrophic lateral sclerosis. J Biol Chem. 2007;282:16329–16335.

Bawono LC, Khairinisa MA, Jiranusornkul S, Levita J. The role of catechins of Camellia sinensis leaves in modulating antioxidant enzymes: A review and case study. J Appl Pharm Sci. 2023. http://doi.org/10.7324/JAPS.2023.143056

Sheng Y, Sun Y, Tang Y, Yu Y, Wang J, Zheng F, Li Y, Sun Y. Catechins: Protective mechanism of antioxidant stress in atherosclerosis. Front Pharmacol. 2023;14:1144878.

Nakano S, Megro SI, Hase T, Suzuki T, Isemura M, Nakamura Y, Ito S. Computational Molecular Docking and X-ray Crystallographic Studies of Catechins in New Drug Design Strategies. Molecules. 2018;23(8):2020.

Al-Shabib NA, Khan JM, Malik A, Tabish Rehman M, AlAjmi MF, Husain FM, Hisamuddin M, Altwaijry N. Molecular interaction of tea catechin with bovine β-lactoglobulin: A spectroscopic and in silico studies. Saudi Pharm J. 2020;28(3):238-245.

Cui F, Yang K, Li Y. Investigate the binding of catechins to trypsin using Docking and molecular dynamics simulation. PLoS ONE. 2015;10(5) e0125848.

Mhatre S, Gurav N, Shah M, Patravale V. Entry-inhibitory role of catechins against SARS-CoV-2 and its UK variant. Comp Biol Med. 2021;135:104560.

Megantara S, Wathoni N, Mohammed AFA, Suhandi C, Ishmatullah MH, Putri MFFD. In Silico Study: Combination of α-Mangostin and Chitosan Conjugated with Trastuzumab against Human Epidermal Growth Factor Receptor 2. Polymers 2022; 14(13):2747. DOI: https://doi.org/10.3390/polym14132747

Sujana D, Saptarini NM, Sumiwi SA, Levita J. Nephroprotective activity of medicinal plants: A review on in-silico, in-vitro, and in-vivo based studies. J Appl Pharm Sci. 2021; 11(10):113–127.

Megantara S, Iwo MI, Levita J, Ibrahim S. Determination of ligand position in aspartic proteases by correlating Tanimoto coefficient and binding affinity with root mean square deviation. J App Pharm Sci, 2016; 6 (01): 125-129.

Lolok N, Sumiwi SA, Ramadhan DSF, Levita J, Sahidin I. Molecular dynamics study of stigmasterol and beta-sitosterol of Morinda citrifolia L. towards α-amylase and α-glucosidase. J Biomol Struct Dyn. 2023. DOI: 10.1080/07391102.2023.2243519

Baroroh U, Muscifa ZS, Destiarani W, Rohmatulloh FG, Yusuf M. Molecular interaction analysis and visualization of protein-ligand docking using Biovia Discovery Studio Visualizer. Indones J Comput Biol. 2023; 2(1): 22-30.

Alazmi M, Motwalli O. In silico virtual screening, characterization, docking and molecular dynamics studies of crucial SARS-CoV-2 proteins. J Biomol Struct Dyn. 2021; 39(17): 6761-6771.

Weng YL, Naik SR, Dingelstad N, Lugo MR, Kalyaanamoorthy S, Ganesan A. Molecular dynamics and in silico mutagenesis on the reversible inhibitor-bound SARS-CoV-2 main protease complexes reveal the role of lateral pocket in enhancing the ligand affinity. Sci Rep. 2021; 11(1): 7429.

Elftmaoui Z, Bignon E. Robust AMBER Force Field Parameters for Glutathionylated Cysteines. Int J Mol Sci. 2023; 24(19): 15022.

Kubitzki MB, de Groot BL. Molecular dynamics simulations using temperature-enhanced essential dynamics replica exchange. Biophys J. 2007; 92(12): 4262-4270.

Ye X, Ling Q, Chen S. Identification of neprilysin as a potential target of arteannuin using computational drug repositioning. Brazilian Journal of Pharmaceutical Sciences. 2017; 53(2):e16087. http://dx.doi.org/10.1590/s2175-97902017000216087

Fernandes PO, Martins DM, Bozzi AS, Martins JPA, de Moraes AH, Maltarollo VG. Molecular insights on ABL kinase activation using tree based machine learning models and molecular docking. Molecular Diversity. 2021; 25(3):3. https://doi.org/10.1007/s11030-021-10261-z

Manjula R, Wright GSA, Strange RW, Padmanabhan B. Assessment of ligand binding at a site relevant to SOD1 oxidation and aggregation. FEBS Letters. 2018; 592:1725-1737. https://doi.org/10.1002/1873-3468.13055

Omar AM, Aljahdali AS, Safo MK, Mohamed GA, Ibrahim SR. Docking and Molecular Dynamic Investigation of Phenylspirodrimanes as Cannabinoid Receptor-2 Agonist. Molecules. 2023; 28(44); 1-17. https://doi.org/10.3390/molecules28010044

Manandhar S, Sankhe R, Priya K, Hari G, Kumar H, Mehta CH, Nayak UY, Pai KSR. Molecular dynamics and structure based virtual screening and identifcation of natural compounds as Wnt signaling modulators: possible therapeutics for Alzheimer’s disease. Molecular Diversity. 2022; 26: 2793 - 2811. https://doi.org/10.1007/s11030-022-10395-8.

Vemula D, Maddi DR, Bhandari V. Homology modeling, virtual screening, molecular docking, and dynamic studies for discovering Staphylococcus epidermidis FtsZ inhibitors. Frontiers in Molecular Biosciences. 2022; 10:1087676. DOI:10.3389/fmolb.2023.1087676.

Saddique FA, Ahmad M, Ashfaq UA, Muddassar M, Sultan S, Zaki MEA. Identification of Cyclic Sulfonamides with an N-arylacetamide Group as α-Glucosidase and α-Amylase Inhibitors: Biological Evaluation and Molecular Modeling. Pharmaceuticals. 2021; 15(106): 1-22. https://doi.org/ 10.3390/ph15010106




DOI: https://doi.org/10.24198/ijpst.v11i1.51034

Refbacks

  • Saat ini tidak ada refbacks.


 Switch to English

Back to Top

View My Stats

Penerbit Universitas Padjadjaran

Jurnal ini terindeks di :

      

Creative Commons Attribution :

Creative Commons License
Indonesian Journal of Pharmaceutical Science and Technology by Universitas Padjadjaran is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Based on a work at http://jurnal.unpad.ac.id/ijpst/