Eficacy Red Ginger in Reduce The Risk of Covid-19 Severity in COPD Patients: A Review
Abstrak
Chronic obstructive pulmonary disease (COPD) is a major global health problem and has an impact on increasing healthcare costs and decreasing productivity. Patients with COPD have a higher prevalence of coronary ischemia and other factors that put them at higher risk for COVID-19-related complications. A strong immune system can help increase the body's resistance so as to reduce the risk in the midst of the COVID-19 pandemic. The use of natural therapy in the treatment of chronic diseases is an opportunity for Indonesia as a tropical country that has many variations of plants that have the potential to become herbal medicines. Red ginger (Zingiber officinale var. rubrum) is one of the most widely consumed medicinal plants in Indonesia. Red ginger has greater anti-inflammatory and antioxidant content than other types of ginger. The antioxidant and anti-inflammatory effects of red ginger in addition to helping reduce the effects of reducing the risk of COVID-19 severity, can also help improve lung function. The preparation of red ginger that has been used in the community is steeping. Therefore, red ginger has the potential to effectively reduce the risk of COVID-19 severity in COPD patients with anti-inflammatory and antioxidant effects in reducing NF-B and the effectiveness of improving lung function.
Kata Kunci
Teks Lengkap:
PDF (English)Referensi
O'Reilly S. Chronic Obstructive Pulmonary Disease. Am J Lifestyle Med. 2017;11(4):296-302.
Ramadhan MAH, Hartono B. Kejadian Penyakit Paru Obstruktif Kronik (PPOK) Pada Pengendara Ojek Online di Kota Bogor dan Kota Depok Tahun 2018 (Studi Kasus Pencemaran Udara). Jurnal Nasional Kesehatan Lingkungan Global. 2020;1(1):1-9.
Holipah H, Sulistomo HW, Maharani A. Tobacco smoking and risk of all-cause mortality in Indonesia. PLoS One. 2020;15(12):e0242558.
Astuti PAS, Assunta M, Freeman B. Why is tobacco control progress in Indonesia stalled? - a qualitative analysis of interviews with tobacco control experts. BMC Public Health. 2020;20:527.
Rodrigue C, Beauchsne MF, Savaria F, Forget A, Lemiere C, et al. Adverse events among COPD patients treated with long-acting anticholinergics and β2-agonists in an outpatient respiratory clinic. Respiratory Medicine. 2016;113:65-73.
Fernandes FLA, Cukier A, Camelier AA, et al. Recommendations for the pharmacological treatment of COPD: questions and answers. J Bras Pneumol. 2017;43(4):290-301.
Mahmudah RL, Ikawati Z,Wahyono D. A Qualitative Study of Perspectives, Expectations and Needs of Education in Chronic Obstructive Pulmonary Disease (COPD). International Journal of Current Pharmaceutical Research. 2017;9(1):32-5.
Clarke R, Lundy FT, McGarvey L. Herbal treatment in asthma and COPD–current evidence. Clinical Phytoscience. 2015;1(4):1-7.
Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents. 2020;55(3):105924.
Finney LJ, Glanville N, Farne H, Aniscenko J, Fenwick P, Kemp SV, Trujillo-Torralbo MB, Loo SL, Calderazzo MA, Wedzicha JA, Mallia P, Bartlett NW, Johnston SL, Singanayagam A. Inhaled corticosteroids downregulate the SARS-CoV-2 receptor ACE2 in COPD through suppression of type I interferon. J Allergy Clin Immunol. 2021;147(2):510-9.
Schultze A, Walker AJ, MacKenna B, Morton CE, Bhaskaran K, Brown JP, Rentsch CT, Williamson E, Drysdale H, Croker R, Bacon S, Hulme W, Bates C, Curtis HJ, Mehrkar A, Evans D, Inglesby P, Cockburn J, McDonald HI, Tomlinson L, Mathur R, Wing K, Wong AYS, Forbes H, Parry J, Hester F, Harper S, Evans SJW, Quint J, Smeeth L, Douglas IJ, Goldacre B; OpenSAFELY Collaborative. Risk of COVID-19-related death among patients with chronic obstructive pulmonary disease or asthma prescribed inhaled corticosteroids: an observational cohort study using the OpenSAFELY platform. Lancet Respir Med. 2020 Nov;8(11):1106-1120. doi: 10.1016/S2213-2600(20)30415-X. Epub 2020 Sep 24. PMID: 32979987; PMCID: PMC7515601.
Wang L, Foer D, Bates DW, Boyce JA, Zhou L. Risk factors for hospitalization, intensive care, and mortality among patients with asthma and COVID-19. J Allergy Clin Immunol. 2020;146(4):808-12.
Halpin DMG, Vogelmeier CF, Agusti AA. COPD & COVID-19. Arch Bronconeumol (Engl Ed). 2021 Mar;57(3):162-164. doi: 10.1016/j.arbr.2021.01.004. Epub 2021 Mar 10. PMID: 33994646; PMCID: PMC7945863.
Mousing CA, Sørensen D. Living with the risk of being infected: COPD patients' experiences during the coronavirus pandemic. J Clin Nurs. 2021 Jun;30(11-12):1719-1729. doi: 10.1111/jocn.15727. Epub 2021 Apr 19. PMID: 33616300; PMCID: PMC8014212.
Lorensia A, Suryadinata RV, Dita Sukmaya Prawitasari. Knowledge and perception on risk of respiration disorders in COVID-19 pandemic in COPD patient: a mixed-method study. Pharmacogn J. 2023; 15(5):1-10.
Aryanta IWR. Manfaat Jahe untuk Kesehatan. E-Jurnal Widya Kesehatan. 2019;1(2):39-43.
Lorensia A, Pratama, AM, Sukarno DA, Suryadinata RV. (2021) Effects of Red Ginger (Zingiber officinale var rubrum) to Improve Lung Function in reducing the risk of COVID-19 in Stable COPD Patients. Teikyo Medical Journal, 44 (6). pp. 2667-2676. ISSN 03875547
Mao QQ, Xu XY, Cao SY, et al. Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe). Foods. 2019;8(6):185.
Supu RD, Diantini A, Levita J. Red Ginger (Zingiber officinale var. rubrum): Its Chemical Constituents, Pharmacological Activities and Safety. Fitofarmaka. 2018;8(1):25-31.
Levita J, Syafitri DM, Supu RD, et al. Pharmacokinetics of 10-gingerol and 6-shogaol in the plasma of healthy subjects treated with red ginger (Zingiber officinale var. Rubrum) suspension. Biomed Rep. 2018;9(6):474-482.
Saragih J, Assa J, Langi T. Antioxidant Activity of Red Ginger Extract (Zingiberofficinale var. rubrum) Inhibit Oxidation Peanut Oil (Arachis hypogaea L.). COCOS. 2020;6(6):1-6.
Sutyarso, Susantiningsih, Suharto. The Effect of Red Ginger Ethanol Extract (Zingiber officinale Roxb var Rubrum) to Airway Goblet Cells Count And Cilliary Lenght on Cigarette Smoke-Induced White Male Rats Sprague dawley Strains. Medical Journal of Lampung University. 2014;3(2):1-9.
Graziani D, Soriano JB, Del Rio-Bermudez C, et al. Characteristics and Prognosis of COVID-19 in Patients with COPD. J Clin Med. 2020;9(10):3259.
Morgan AD, Zakeri R, Quint JK. Defining the relationship between COPD and CVD: what are the implications for clinical practice? Ther Adv Respir Dis. 2018 Jan-Dec;12:1753465817750524. doi: 10.1177/1753465817750524. PMID: 29355081; PMCID: PMC5937157.
Lorensia A, Pratama AM, Hersandio R. Knowledge and Attitudes on Smoking Cessation of E-Cigarettes: A Mixed Methods Study of Pharmacist Students in Surabaya, Indonesia. Journal of Preventive Medicine and Hygiene. 2021;62((4):E918-25.
Dacha S, Chaiwong W, Tajarernmuang P. Association of cardiovascular disease with COPD: cardiac function and structure evaluation. J Bras Pneumol. 2022 Nov 14;48(5):e20220388. doi: 10.36416/1806-3756/e20220388. PMID: 36383782; PMCID: PMC9747161.
Woods JA, Hutchinson NT, Powers SK, et al. The COVID-19 pandemic and physical activity. Sports Medicine and Health Science. 2020;2(2):55-64.
Calcuttawala F. Nutrition as a key to boost immunity against COVID-19. Clin Nutr ESPEN. 2022;49:17-23.
Leung JM, Niikura M, Yang CWT, Sin DD. COVID-19 and COPD. Eur Respir J. 2020;56(2):2002108.
Daccord C, Touilloux B, Garnier VC. Asthma and COPD management during the COVID-19 pandemic. Rev Med Suisse. 2020;16(692):933-8.
Lorensia A, Suryadinata RV, Savitri KYD. COPD Symptoms and Risk Factors of Respiratory Disorders in Builders. Kemas. 2022;17(4):552-65.
Tashkin DP, Strange C. Inhaled corticosteroids for chronic obstructive pulmonary disease: what is their role in therapy? Int J Chron Obstruct Pulmon Dis. 2018 Aug 27;13:2587-2601. doi: 10.2147/COPD.S172240. PMID: 30214177; PMCID: PMC6118265.
Bartziokas K, Papaporfyriou A, Hillas G, Papaioannou AI, Loukides S. Global initiative for chronic obstructive lung disease (GOLD) recommendations: strengths and concerns for future needs. Postgrad Med. 2023;135(4):327-33.
Richards GA, Feldman C. The use of corticosteroids for COVID-19 infection. Afr J Thorac Crit Care Med. 2020 Sep 16;26(3):10.7196/AJTCCM.2020.v26i3.106. doi: 10.7196/AJTCCM.2020.v26i3.106. PMID: 34235424; PMCID: PMC7346767.
RECOVERY Collaborative Group; Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, Staplin N, Brightling C, Ustianowski A, Elmahi E, Prudon B, Green C, Felton T, Chadwick D, Rege K, Fegan C, Chappell LC, Faust SN, Jaki T, Jeffery K, Montgomery A, Rowan K, Juszczak E, Baillie JK, Haynes R, Landray MJ. Dexamethasone in Hospitalized Patients with Covid-19. N Engl J Med. 2021 Feb 25;384(8):693-704. doi: 10.1056/NEJMoa2021436. Epub 2020 Jul 17. PMID: 32678530; PMCID: PMC7383595.
Tomazini BM, Maia IS, Cavalcanti AB, et al. Effect of Dexamethasone on Days Alive and Ventilator-Free in Patients With Moderate or Severe Acute Respiratory Distress Syndrome and COVID-19: The CoDEX Randomized Clinical Trial. JAMA. 2020;324(13):1. doi:10.1001/JAMA.2020.17021
Barnes PJ. Inhaled Corticosteroids. Pharmaceuticals. 2010;3(3):514-40.
Griesel M, Wagner C, Mikolajewska A, Stegemann M, Fichtner F, Metzendorf MI, Nair AA, Daniel J, Fischer AL, Skoetz N. Inhaled corticosteroids for the treatment of COVID-19. Cochrane Database Syst Rev. 2022 Mar 9;3(3):CD015125. doi: 10.1002/14651858.CD015125. PMID: 35262185; PMCID: PMC8905579.
COVID-19 Treatment Guidelines. Corticosteroids. 2022. https://www.covid19treatmentguidelines.nih.gov/therapies/immunomodulators/corticosteroids/
Yang A, Yu G, Wu Y, Wang H. Role of β2-adrenergic receptors in chronic obstructive pulmonary disease. Life Sci. 2021 Jan 15;265:118864. doi: 10.1016/j.lfs.2020.118864. Epub 2020 Dec 7. PMID: 33301808.
Lourenço JD, Ito JT, Martins MA, Tibério IFLC, Lopes FDTQDS. Th17/Treg Imbalance in Chronic Obstructive Pulmonary Disease: Clinical and Experimental Evidence. Front Immunol. 2021 Dec 9;12:804919. doi: 10.3389/fimmu.2021.804919. PMID: 34956243; PMCID: PMC8695876.
Martonik D, Parfieniuk-Kowerda A, Rogalska M, Flisiak R. The Role of Th17 Response in COVID-19. Cells. 2021 Jun 19;10(6):1550. doi: 10.3390/cells10061550. PMID: 34205262; PMCID: PMC8235311.
Barbieri A, Robinson N, Palma G, Maurea N, Desiderio V, Botti G. Can Beta-2-Adrenergic Pathway Be a New Target to Combat SARS-CoV-2 Hyperinflammatory Syndrome?-Lessons Learned From Cancer. Front Immunol. 2020;11:588724.
Kim HP, Lim H, Kwon YS. Therapeutic Potential of Medicinal Plants and Their Constituents on Lung Inflammatory Disorders. Biomol Ther (Seoul). 2017;25(2):91-104.
Rattis BA, Ramos SG, Celes MRN. Curcumin as a Potential Treatment for COVID-19. Front. Pharmacol. 2021;12:675287.
Zhang M, Zhao R, Wang D, Wang L, Zhang Q, Wei S, Lu F, Peng W, Wu C. Ginger (Zingiber officinale Rosc.) and its bioactive components are potential resources for health beneficial agents. Phytother Res. 2021;35(2):711-42.
Zhang S, Kou X, Zhao H, Mak KK, Balijepalli MK, Pichika MR. Zingiber officinale var. rubrum: Red Ginger's Medicinal Uses. Molecules. 2022 Jan 25;27(3):775. doi: 10.3390/molecules27030775. PMID: 35164040; PMCID: PMC8840670.
Sharifi-Rad M, Varoni EM, Salehi B, Sharifi-Rad J, et al. Plants of the Genus Zingiber as a Source of Bioactive Phytochemicals: From Tradition to Pharmacy. Molecules. 2017;22:2145.
Townsend EA, Siviski ME, Zhang Y, Xu C, Hoonjan B, Emala CW. Effects of ginger and its constituents on airway smooth muscle relaxation and calcium regulation. Am J Respir Cell Mol Biol. 2013;48(2):157-63.
Lorensia A, Sukarno DA, Mahmudah RL. Red Ginger (Zingiber officinale var. rubrum) Infusion in Improve COPD Symptoms. Indonesian Journal of Pharmaceutical Science and Technology. 2022;9(2):75-84.
Laforge M, Elbim C, Frère C. et al. Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nat Rev Immunol. 2020;20:515–6.
Fischer BM, Voynow JA, Ghio AJ. COPD: balancing oxidants and antioxidants. Int J Chron Obstruct Pulmon Dis. 2015;10:261-276.
Lorensia A, Suryadinata RV, Mahfidz IK. 2022. Effects of Dietary Antioxidant Intake on Lung Functions in Construction Workers in Surabaya. KEMAS: Jurnal Kesehatan Masyarakat. 2022. 18(1):20-30.
Derouiche S. Oxidative Stress Associated with SARS-Cov-2 (COVID-19) Increases the Severity of the Lung Disease - A Systematic Review. J Infect Dis Epidemiol. 2020;6:121.
Suharto IPS, Lutfi EI, Rahayu MD. PenGARUH Pemberian Jahe (Zingiber officinale) terhadap Glukosa Darah Pasien Diabetes Mellitus. Care:Jurnal Ilmiah Ilmu Kesehatan. 2019;7(3):76-83.
Hariharan A, Hakeem AR, Radhakrishnan S, Reddy MS, Rela M. The Role and Therapeutic Potential of NF-kappa-B Pathway in Severe COVID-19 Patients. Inflammopharmacology. 2021;29(1):91-100.
Davies DA, Adlimoghaddam A, Albensi BC. The Effect of COVID-19 on NF-κB and Neurological Manifestations of Disease. Mol Neurobiol. 2021;58:4178–87.
DOI: https://doi.org/10.24198/ijpst.v12i2.51076
Refbacks
- Saat ini tidak ada refbacks.
Switch to English Back to Top |
View My Stats Penerbit Universitas PadjadjaranJurnal ini terindeks di :Creative Commons Attribution :
Based on a work at http://jurnal.unpad.ac.id/ijpst/ |