The Potential of Probiotic Role in Tuberculosis Therapy : A Narrative Review

Victoria yulita Fitriani, Budi Suprapti, Muhammad Amin

Abstrak


Tuberculosis is an infectious disease that is a leading cause of death globally, as well as one of the top ten causes of death from a single infectious agent. Antibiotics treatment for tuberculosis reduces pro-inflammatory cytokines, which is one of the reasons for dysbiosis. The proportion of Actinobacteria, Firmicutes, and Bacteroidetes in the gut microbiota distinguishes between drug-sensitive and drug-resistant tuberculosis. The gut–lung axis theory explains how tuberculosis alters the gut microbiota while also altering the immune response. Probiotics have immunostimulatory and immunoregulatory properties that affect the immune system. The gut-lung axis is a two-way system that enables microbial products, endotoxins, metabolites, hormones, and cytokines to reach the bloodstream that connects the intestines and lungs, where they exert effects on both. According to the gut–lung axis theory, probiotics may play a role in tuberculosis immune responses. This review includes studies conducted in English and Indonesian from 2010-2022. The Cochrane Library, Scopus, Medline, PubMed, and grey literature databases will be used in the review. Studies that use specimens from pulmonary tuberculosis patients, healthy volunteers induced by Mycobacterium tuberculosis, volunteers with a history of pulmonary tuberculosis disease, and volunteers who had close contact with pulmonary tuberculosis patients were considered eligible. The current review highlights the immune modulation induced by probiotics usage in tuberculosis. Accordingly, probiotics have been shown to enhance the immune response against tuberculosis. More studies are needed to understand probiotic’s role in different types of tuberculosis, and the influence of different probiotic bacteria on immune modulation.

Kata Kunci


Gut-Lung Axis; Lactobacillus; Microbiota; Immunity; Mycobacterium tuberculosis

Teks Lengkap:

PDF (English)

Referensi


Dheda K, Fennelly KP, Udwadia ZF, Lange C, Furin J, Atre SR, et al. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. The Lancet Respiratory Medicine. 2017;5(4):291–360.

World Health Organization. Global tuberculosis report 2019. 2019.

Cheung MK, Lam WY, Fung WYW, Law PTW, Au CH, Nong W, et al. Sputum Microbiota in Tuberculosis as Revealed by 16S rRNA Pyrosequencing. PLoS ONE. 2013;8(1):1–8.

Hong B-Y, Cervantes J, Maulén NP, Granados H, Balcells ME, Adami AJ. Microbiome Changes during Tuberculosis and Antituberculous Therapy. Clinical Microbiology Reviews. 2016;29(4):915–26.

Cervantes J, Hong BY. The gut-lung axis in tuberculosis. Pathogens and Disease. 2017;75(8):2017–9.

Osei Sekyere J, Maningi NE, Fourie PB. Mycobacterium tuberculosis , antimicrobials, immunity, and lung–gut microbiota crosstalk: current updates and emerging advances. Ann NY Acad Sci. 2020 May;1467(1):21–47.

Marsland BJ, elien Trompette A, Gollwitzer ES. TRANSATLANTIC AIRWAY CONFERENCE The Gut–Lung Axis in Respiratory Disease. 2015;12(November).

Kolloli A, Subbian S. Host-Directed Therapeutic Strategies for Tuberculosis. Front Med. 2017 Oct 18;4:171.

de Martino M, Lodi L, Galli L, Chiappini E. Immune Response to Mycobacterium

tuberculosis: A Narrative Review. Front Pediatr. 2019 Aug 27;7:350.

Domingo-Gonzalez R, Prince O, Cooper A, Khader S. Cytokines and Chemokines in Mycobacterium tuberculosis infection. Microbiol Spectr [Internet]. 2016 Oct [cited 2020 Dec 23];4(5). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5205539/

Khan TA, Mazhar H, Saleha S, Tipu HN, Muhammad N, Abbas MN. Interferon-Gamma Improves Macrophages Function against M. tuberculosis in Multidrug-Resistant Tuberculosis Patients. Chemother Res Pract [Internet]. 2016 [cited 2020 Aug 5];2016. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4960331/

Wu J, Liu W, He L, Huang F, Chen J, Cui P, et al. Sputum microbiota associated with new, recurrent and treatment failure tuberculosis. PLoS ONE. 2013;8(12):1–11.

Desalegn G, Tsegaye A, Gebreegziabiher D, Aseffa A, Howe R. Enhanced IFN-γ, but not IL-2, response to Mycobacterium tuberculosis antigens in HIV/latent TB co-infected patients on long-term HAART. BMC Immunol. 2019 Dec;20(1):35.

El O, Il O, Hu N, Dc N. Evaluation of Interferon-Gamma, Interleukin 6 and Interleukin 10 in Tuberculosis Patients in Umuahia. Annals of Clinical and Laboratory Research. 2019;6.

Abdalla AE, Lambert N, Duan X, Xie J. Interleukin-10 Family and Tuberculosis: An Old Story Renewed. Int J Biol Sci. 2016 Apr 27;12(6):710–7.

Hu Y, Yang Q, Liu B, Dong J, Sun L, Zhu Y, et al. Gut microbiota associated with pulmonary tuberculosis and dysbiosis caused by anti-tuberculosis drugs. Journal of Infection. 2019 Apr;78(4):317–22.

Khan N, Vidyarthi A, Nadeem S, Negi S, Nair G, Agrewala JN. Alteration in the Gut Microbiota Provokes Susceptibility to Tuberculosis. Front Immunol [Internet]. 2016 Nov 28 [cited 2019 Sep 20];7. Available from: http://journal.frontiersin.org/article/10.3389/fimmu.2016.00529/full

Hu Y, Feng Y, Wu J, Liu F, Zhang Z, Hao Y, et al. The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients. Front Cell Infect Microbiol. 2019 Apr 3;9:90.

Wang S, Yang L, Hu H, Lv L, Ji Z, Zhao Y, et al. Characteristic gut microbiota and metabolic changes in patients with pulmonary tuberculosis. Microbial Biotechnology [Internet]. 2021 [cited 2021 Aug 30]; Available from: https://sfamjournals.onlinelibrary.wiley.com/doi/abs/10.1111/1751-7915.13761

Hong B-Y, Paulson JN, Stine OC, Weinstock GM, Cervantes JL. Meta-analysis of the lung microbiota in pulmonary tuberculosis. Tuberculosis (Edinb). 2018 Mar;109:102–8.

Dumas A, Corral D, Colom A, Levillain F, Peixoto A, Hudrisier D, et al. The Host Microbiota Contributes to Early Protection Against Lung Colonization by Mycobacterium tuberculosis. Front Immunol. 2018 Nov 14;9:2656.

Namasivayam S, Sher A, Glickman MS, Wipperman MF. The Microbiome and Tuberculosis: Early Evidence for Cross Talk. Garsin DA, editor. mBio. 2018 Sep 18;9(5):e01420-18, /mbio/9/5/mBio.01420-18.atom.

Bingula R, Filaire M, Radosevic-Robin N, Bey M, Berthon JY, Bernalier-Donadille A, et al. Desired Turbulence? Gut-Lung Axis, Immunity, and Lung Cancer. Journal of Oncology. 2017;2017.

Corrêa-Oliveira R, Fachi JL, Vieira A, Sato FT, Vinolo MAR. Regulation of immune cell function by short-chain fatty acids. Clin Trans Immunol. 2016 Apr 22;5(4):e73.

World Health Organization. Guidelines for the Evaluation of Probiotics in Food. 2002;1–11.

Hori T, Matsuda K, Oishi K. Probiotics: A Dietary Factor to Modulate the Gut Microbiome, Host Immune System, and Gut–Brain Interaction. Microorganisms. 2020 Sep 11;8(9):1401.

Kekkonen R. Immunomodulatory effects of probiotic bacteria in healthy adults [Internet] [Dissertation]. [Finland]: University of Helsinki; 2008. Available from: https://helda.helsinki.fi/handle/10138/20186

Khalighi A, Behdani R, Kouhestani S. Probiotics: A Comprehensive Review of Their Classification, Mode of Action and Role in Human Nutrition. Probiotics and Prebiotics in Human Nutrition and Health. 2016;

Dong H, Rowland I, Yaqoob P. Comparative effects of six probiotic strains on immune function in vitro. British Journal of Nutrition. 2012;108:459–70.

Ho Y-H, Huang Y-T, Lu Y-C, Lee S-Y, Tsai M-F, Hung S-P, et al. Effects of gender and age on immune responses of human peripheral blood mononuclear cells to probiotics: A large scale pilot study. The journal of nutrition, health & aging. 2017 May;21(5):521–6.

[EFFECT OF LIQUID PROBIOTICS ON THE GROWTH OF MYCOBACTERIUM TUBERCULOSIS IN VITRO]. Tuberk Biolezni Legkih. 2010;(4):23–7.

Gavrilova NN, Ratnikova IA, Sadanov AK, Bayakisheva K, Tourlibaeva ZJ, Belikova OA. Application of probiotics in complex treatment of tuberculosis. Journal of Engineering Research and Applications www.ijera.com ISSN. 2014;4(114):2248–962213.

Montané E, Barriocanal AM, Arellano AL, Valderrama A, Sanz Y, Perez-Alvarez N, et al. Pilot, double-blind, randomized, placebo-controlled clinical trial of the supplement food Nyaditum resae® in adults with or without latent TB infection: Safety and immunogenicity. Goletti D, editor. PLoS ONE. 2017 Feb 9;12(2):e0171294.

Damiti SA. Pengaruh Suplementasi Probiotik dan Vitamin B1, B6, B12 terhadap perubahan kadar IFN-γ dan IL-17 pada Pasien Tuberkulosis dengan Obat Anti Tuberkulosis Kategori 1 [Thesis]. [Surabaya]: Universitas Airlangga; 2017.

Ramadhani R. Pengaruh Suplementasi Probiotik dan Vitamin B1, B6, B12 terhadap perubahan kadar IFN-γ dan IgG pada Pasien Tuberkulosis dengan Obat Anti Tuberkulosis Kategori 1 [Thesis]. [Surabaya]: Universitas Airlangga; 2017.

Rizkiya. Pengaruh Suplementasi Probiotik dan Vitamin B1, B6, B12 terhadap perubahan kadar IFN-γ dan IL-10 pada Pasien Tuberkulosis dengan Obat Anti Tuberkulosis Kategori 1 ( Studi di KSM Pulmonologi dan Kedokteran Respirasi RS Universitas Airlangga Surabaya dan Puskesmas dalam Lingkungan Dinas Kesehatan Kota Surabaya) [Thesis]. [Surabaya]: Universitas Airlangga; 2017.

Suprapti B, Suharjono S, Raising R, Yulistiani Y, Izzah Z, Nilamsari WP, et al. Effects of Probiotics and Vitamin B Supplementation on IFN-γ and IL-12 Levels During Intensive Phase Treatment of Tuberculosis. INDONESIAN JOURNAL OF PHARMACY. 2018 Jun 22;29(2):80.

Winarso LA. Pengaruh Suplementasi Probiotik dan Vitamin B1, B6, B12 terhadap perubahan kadar IFN-γ dan TNF-α pada Pasien Tuberkulosis dengan Obat Anti Tuberkulosis Kategori 1 ( Studi di KSM Pulmonologi dan Kedokteran Respirasi RS Universitas Airlangga Surabaya dan Puskesmas dalam Lingkungan Dinas Kesehatan Kota Surabaya) [Thesis]. [Surabaya]: Universitas Airlangga; 2017.

Setiyaningrum Z, Darmono SS, Sofro MAU, Dharmana E, Widyastiti NS. Effect of combined probiotics and zinc supplementation on immune status of pulmonary tuberculosis patients.pdf. Pakistan Journal of Nutrition. 2016;15(7):680–5.

Ghadimi D, de Vrese M, Heller KJ, Schrezenmeir J. Lactic acid bacteria enhance autophagic ability of mononuclear phagocytes by increasing Th1 autophagy-promoting cytokine (IFN-γ) and nitric oxide (NO) levels and reducing Th2 autophagy-restraining cytokines (IL-4 and IL-13) in response to Mycobacterium tuberculosis antigen. International Immunopharmacology. 2010 Jun;10(6):694–706.

Mertaniasih NM, Isnaeni I, Rosyidah F. Evaluation of IFN-? level in peripheral blood mononuclear cell of childhood tuberculosis treated by lactic acid bacteria multi cultures. jrp. 2020 Mar 12;24(2):188–95.

Raras TYM, Rusmini H, Wisudanti DD, Chozin IN. Kefir Stimulates Anti-Inflammatory Response in TB-AFB (+) Patients. Pakistan Journal of Nutrition. 2015 Jun 1;14(6):330–4.

Panteleev AV, Nikitina IY, Burmistrova IA, Kosmiadi GA, Radaeva TV, Amansahedov RB, et al. Severe Tuberculosis in Humans Correlates Best with Neutrophil Abundance and Lymphocyte Deficiency and Does Not Correlate with Antigen-Specific CD4 T-Cell Response. Front Immunol. 2017 Aug 21;8:963.

Petruccioli E, Chiacchio T, Pepponi I, Vanini V, Urso R, Cuzzi G, et al. First characterization of the CD4 and CD8 T-cell responses to QuantiFERON-TB Plus. Journal of Infection. 2016 Dec;73(6):588–97.

Sabhapandit D, Hazarika P, Phukan AC, Lynrah KG, D. E. Comparison of CD4 and CD8 counts and ratio in HIV negative pulmonary tuberculosis patients with normal healthy controls. Int J Res Med Sci. 2017 Sep 28;5(10):4567.

YIN Y, QIN J, DAI Y, ZENG F, PEI H, WANG J. The CD4+/CD8+ Ratio in Pulmonary Tuberculosis: Systematic and Meta-Analysis Article. Iran J Public Health. 2015 Feb;44(2):185–93.

Wang W, Wang L, Liu Y, Yang F, Zhu L, Zhang X. Value of the Ratio of Monocytes to Lymphocytes for Monitoring Tuberculosis Therapy. Canadian Journal of Infectious Diseases and Medical Microbiology. 2019 May 27;2019:1–5.

Miyahara R, Piyaworawong S, Naranbhai V, Prachamat P, Kriengwatanapong P, Tsuchiya N, et al. Predicting the risk of pulmonary tuberculosis based on the neutrophil-to-lymphocyte ratio at TB screening in HIV-infected individuals. BMC Infect Dis. 2019 Dec;19(1):667.

Iqbal S, Ahmed U, Zaidi SBH. Monocyte Lymphocyte Ratio as a Possible Prognostic Marker in Antituberculous Therapy. Journal of Rawalpindi Medical College. 2014;18(2):178–81.

Alabi A, Kordy F, Lam R, Kirby-Allen M, Kitai I. The Complete Blood Count in Children and Adolescents with Tuberculosis: Utility and Prevalence of Anaemia, Lymphopenia and Neutrophilia. SN Compr Clin Med. 2020 Feb;2(2):181–5.

Yin Y, Kuai S, Liu J, Zhang Y, Shan Z, Gu L, et al. Pretreatment neutrophil-to-lymphocyte ratio in peripheral blood was associated with pulmonary tuberculosis retreatment. Arch Med Sci. 2017 Mar 1;13(2):404–11.

Zhang Y, Zou P, Gao H, Yang M, Yi P, Gan J, et al. Neutrophil–lymphocyte ratio as an early new marker in AIV-H7N9-infected patients: a retrospective study. TCRM. 2019 Jul;Volume 15:911–9.

Lu LL, Smith MT, Yu KKQ, Luedemann C, Suscovich TJ, Grace PS, et al. IFN-γ-independent immune markers of Mycobacterium tuberculosis exposure. Nat Med. 2019 Jun;25(6):977–87.

Deveci F, Akbulut HH, Turgut T, Muz MH. Changes in Serum Cytokine Levels in Active Tuberculosis With Treatment. Mediators Inflamm. 2005 Oct 24;2005(5):256–62.

Basingnaa A, Antwi-Baffour S, Nkansah D, Afutu E, Owusu E. Plasma Levels of Cytokines (IL-10, IFN-γ and TNF-α) in Multidrug Resistant Tuberculosis and Drug Responsive Tuberculosis Patients in Ghana. Diseases. 2018 Dec 23;7(1):2.

Moreira-Teixeira L, Mayer-Barber K, Sher A, O’Garra A. Type I interferons in tuberculosis: Foe and occasionally friend. Journal of Experimental Medicine. 2018 May 7;215(5):1273–85.

Cardona P, Marzo-Escartín E, Tapia G, Díaz J, García V, Varela I, et al. Oral Administration of Heat-Killed Mycobacterium manresensis Delays Progression toward Active Tuberculosis in C3HeB/FeJ Mice. Front Microbiol [Internet]. 2016 Jan 5 [cited 2020 Dec 21];6. Available from: http://journal.frontiersin.org/Article/10.3389/fmicb.2015.01482/abstract

Faria AMC, Weiner HL. Oral tolerance. Immunol Rev. 2005 Aug;206(1):232–59.

Nn L, Gs S, As A. Regulatory T-Cells: Mechanisms of Immune Response Inhibition and Involvement in the Control of Tuberculosis Infection. Journal of Autoimmune Disorders. 2017;7.

Cardona P, Cardona P-J. Regulatory T Cells in Mycobacterium tuberculosis Infection. Front Immunol [Internet]. 2019 Sep 11 [cited 2020 Dec 30];10. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6749097/

Sahmoudi K, Abbassi H, Bouklata N, El Alami MN, Sadak A, Burant C, et al. Immune activation and regulatory T cells in Mycobacterium tuberculosis infected lymph nodes. BMC Immunol. 2018 Dec;19(1):33.

Ahmed A, Vyakarnam A. Emerging patterns of regulatory T cell function in tuberculosis. Clinical & Experimental Immunology. 2020;202(3):273–87.

Li N, Xie W-P, Kong H, Min R, Hu C-M, Zhou X-B, et al. Enrichment of regulatory T-cells in blood of patients with multidrug-resistant tuberculosis. The International Journal of Tuberculosis and Lung Disease. 2015 Oct 1;19(10):1230–8.

Sivaraj A, Sundar R, Manikkam R, Parthasarathy K, Rani U, Kumar V. Potential applications of lactic acid bacteria and bacteriocins in anti-mycobacterial therapy. Asian Pac J Trop Med. 2018;11(8):453.

Liu Y, Wang J, Wu C. Microbiota and Tuberculosis: A Potential Role of Probiotics, and Postbiotics. Frontiers in Nutrition. 2021;8:191.




DOI: https://doi.org/10.24198/ijpst.v6i1.53635

Refbacks

  • Saat ini tidak ada refbacks.


 Switch to English

Back to Top

View My Stats

Penerbit Universitas Padjadjaran

Jurnal ini terindeks di :

      

Creative Commons Attribution :

Creative Commons License
Indonesian Journal of Pharmaceutical Science and Technology by Universitas Padjadjaran is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Based on a work at http://jurnal.unpad.ac.id/ijpst/