Inhibition Of Leaf Extract of Rubber Plant Against Enterobacteriaceae Isolated from Drinking Water Refill

Sri Agung - Fitri Kusuma

Abstrak


Antibacterial resistance in pathogenic bacteria and their contamination in water are contributing to the spreading of infectious diseases. As a result, isolation and antimicrobial susceptibility testing for drinking water samples are becoming increasingly important in addressing the human health hazards associated with ingesting contaminated water. Therefore, this study was aimed to identify enterobacteria strains in drinking water refill obtained from 20 refill water stations in Jatinangor, West Java, Indonesia and investigated the potential antibacterial activity of rubber plant (Ficus elastica Roxb. ex Hornem) leaf extracts on identified strains of the isolated enterobacteria. Bacterial isolation was accomplished using membrane filtration method and the bacterial identification was performed by observing the cell and colonies morphologies, biochemical testing approach and concluded using the computer program Global Infectious Diseases and Epidemiology Network (GIDEON). The antimicrobial susceptibility test was carried out using the Kirby-Bauer diffusion technique. From 20 water samples, we isolated 30 single colonies which composed of four strains of identified Enterobacteriaceae, as follows: Citrobacter freundii (nine samples), Salmonella typhi (six samples), Serratia marescens (six samples) and Escherichia coli (nine samples) with percentage: 30%, 20%, 20% and 30%, respectively. The extract can inhibit all Enterobacteria isolates, however, among those strains, E. coli was the most susceptible Enterobacteria to be inhibited by F. elastica leaf extract. The current study suggests that this plant potentially to be used as a novel antibacterial agent against Enterobacteria strains as the major gastrointestinal tract pathogenic microbes.


Kata Kunci


Enterobacteriaceae, drinking water refill, Ficus elastica Roxb. ex Hornem, isolation, antibacterial.

Teks Lengkap:

PDF (English)

Referensi


Dhengesu D, Lemma H, Asefa L, Tilahun D. Antimicrobial resistance profile of enterobacteriaceae and drinking water quality among households in Bule Hora Town, South Ethiopia. Risk Manag Healthc Policy. 2022;15: 1569–80.

Peraturan Menteri Kesehatan Republik Indonesia No.492/MENKES/PER/IV/2010. Tentang Persyaratan Kualitas Air Minum.

World Health Organization (WHO). Guidelines for Drinking Water Quality, Incorporating 1st and 2nd Addenda, vol 1, Recommendations, 3rd ed. Geneva: WHO; 2008.

Tewari S, Ramteke PW, Garg SK. Evaluation of simple microbial tests for detection of fecal coliforms directly at 44.5 degrees C. Environ Monit Assess. 2003; 85:191–8.

Chalachew Y, Melese K, Melkamu M. Antimicrobial-resistance pathogen load and public health risk of drinking water in South Gondar. Res Square. 2020;1:1–14.

Spellberg B, Powers JH, Brass EP, Miller LG, Edwards JE. Trends in antimicrobial drug development: implications for the future. Clin Infect Dis. 2004; 38(9): 1279–86.

Shah PM. The Need For New Therapeutic Agents: What Is In The Pipeline? Clin Microbiol Infec Dis. 2005; 11: 36-42.

Gulçin İ, Zafer-Tel A, Kirecci E. Antioxidant, antimicrobial, antifungal and antiradical activities of Cyclotrichium niveum (Boiss.) Manden and Scheng. Int J Food Properties. 2008; 11: 450-71.

Gülçin İ, Kireçci E, Akkemik E, Topal F, Hisar O. Antioxidant and antimicrobial activities of an aquatic plant: Duckweed (Lemna minor L.). Turkish J Biol. 2010; 34: 175-88.

Mbosso EJ, Nguedia JC, Meyer F, Lenta BN, Ngouela S, Lallemand B, et al. Ceramide, cerebroside and triterpenoid saponin from the bark of aerial roots of Ficus elastica (Moraceae). In Phytochemis. 2012; 83: 95–103.

Preeti, Abhishek J, Gaurav K, Loganathan K, Kokati VBR. Phytochemical composition and antioxidant activity of Ficus Elastica Roxb. (Moraceae) Leaves. Research J Farm Tech. 2015; 8(3): 259-64.

Adebayo EA, Isola OR, Taiwo OS, Majolagbe ON, Adekeye BT. Evaluations of the methanol extract of Ficus exasperata stem bark, leaf and root for phytochemical analysis and antimicrobial activities. Afr J Plant Sci 2009; 3(12): 283-7.

Helmi Arifin, Nelvi Anggraini, Dian Handayani, Roslinda Rasyid. Standarisasi ekstrak etanol daun Eugenia cumini, Merr. J Sains Tek Far. 2006; 11(2): 88-93.

Farnsworth NR. Biological and Phytochemical Screening of Plant. J Pharm Sci. 1966; 55: 243-69.

Nurjanah, Izzati L, Abdullah A. Antioxidant activity and bioactive components of Knife Shellfish (Solen spp). J Mar Sci. 2011;16(3): 119-24.

Clasen TF, Alexander KT, Sinclair D, Boisson S, Peletz R, Chang HH, et al. Interventions to improve water quality for preventing diarrhoea. Cochrane Database Syst Rev. 10: CD004794. 2015.

Eisenberg JNS, Scott JC, Porco T. Integrating disease control strategies: balancing water sanitation and hygiene interventions to reduce diarrheal disease burden. Am J Public Health. 2007; 97: 846–52.

Levy K. Does poor water quality cause diarrheal disease? Am J Trop Med Hyg. 2015; 93: 899–900.

Kemenkes RI. Regulation of the Minister of Health of the Republic of Indonesia No.492 / MENKES / Per / IV / 2010 concerning drinking water quality requirements. Jakarta: Ministry of Health Republic of Indonesia; 2010.

Garrity GM, Bell JA, Lilburn TG. Taxonomic outline of the prokaryotes. Bergey’s Manual of Systematic Bacteriology. 2nd edition. New York: Springer; 2004.

Lehman D. Triple Sugar Iron Agar Protocols. American Society for Microbiology; 2016.

Radji M, Oktavia H, Suryadi H. bacteriological examination of refilled drinking water in some of the refilled drinking water depots in the area of Lenteng Agung and Srengseng Sawah, Jakarta Selatan. Majalah Ilmu Kefarmasian. 2008; 5: 101-9.

Saimin J, Hartati H, Purnamasari Y, Mulyawati SA, Tien T, Aritrina P. Microbiological and biochemical contamination analysis of refilled drinking-water in Abeli, Kendari, Southeast Sulawesi. Indones Biomed J. 2020; 12(2): 124-9.

Bai L, Xia S, Lan R, Liu L, Ye C, Wang Y, et al. Isolation and characterization of cytotoxic, aggregative Citrobacter freundii. PLoS ONE . 2012; 7(3): e33054.

Joaquin A, Khan S, Russel N, al Fayez N. Neonatal meningitis and bilateral cerebellar abscesses due to Citrobacter freundii. Pediatr Neurosurg. 1991; 17(1): 23–24.

Pepperell C, Kus JV, Gardam MA, Humar A, Burrows LL. Low-virulence citrobacter species encode resistance to multiple antimicrobials. Antimicrob Agents Chemother. 2002; 46(11): 3555–60.

Guma S, Jiang Z, Zhang Y, Wu C, Chen Z, Xu J, et al. The pathogenic characterization of Citrobacter freundii and its activation on immune related genes in Macrobrachium nipponense. Microb Pathog. 2022; 169: 1-8.

Liu L, Lan R, Liu L, Wang Y, Zhang Y, Wang Y, et al. Antimicrobial resistance and cytotoxicity of Citrobacter spp. in Maanshan Anhui Province, China. Front in Microbiol. 2017; 8, 1-12.

Parry CM, Hien TT, Dougan G, White NJ, Farrar JJ. Typhoid fever. N Engl J Med. 2002; 347: 1770–82.

Saha S, Islam MS, Sajib MSI, Saha S, Uddin MJ, Hooda Y, et al. Epidemiology of typhoid and paratyphoid: Implications for vaccine policy. Clin Infect Dis . 2019; 68(2): S117–23.

Cuypers WL, Jacobs J, Wong V, Klemm EJ, Deborggraeve S, Van Puyvelde S. Fluoroquinolone resistance in Salmonella: insights by whole-genome sequencing. Microb Genom. 2018; 4(7):1-9.

David MD, Weller TM, Lambert P, Fraise AP. An outbreak of Serratia marcescens on the neonatal unit: a tale of two clones. J Hospital Infect. 2006; 63(1):27–33.

Korner RJ, Nicol A, Reeves DS, MacGowan AP, Hows J. Ciprofloxacin resistant Serratia marcescens endocarditis as a complication of non-Hodgkin’s lymphoma. J Infect. 1994; 29(1):73–6.

Su LH, Ou JT, Leu HS, Chiang PC, Chiu YP, Chia JH, et al. Infection Control G. Extended epidemic of nosocomial urinary tract infections caused by Serratia marcescens. J Clin Microbiol. 2003; 41(10): 4726–32.

Voelz A, Muller A, Gillen J, Le C, Dresbach T, Engelhart S, et al. Outbreaks of Serratia marcescens in neonatal and pediatric intensive care units: clinical aspects, risk factors and management. Int J Hyg Environ Health. 2010; 213(2): 79–87.

Ball AP, McGhie D, Geddes AM. Serratia marcescens in a general hospital. Q J Med. 1977; 46(181): 63–71.

Evans ME, Feola DJ, Rapp RP. Polymyxin B sulfate and colistin: old antibiotics for emerging multiresistant Gram-negative bacteria. Ann Pharmacother. 1999; 33(9): 960–7.

Poirel L, Madec JY, Lupo A, Schink AK, Kieffer N, Nordmann P, et al. Antimicrobial resistance in Escherichia coli. Microbiol Spectrum. 2018; 6(4): 1-27.

Wang M, Wang W, Niu Y, Liu T, Li L, Zhang M, et al. A clinical extensively-drug resistant (XDR) Escherichia coli and role of its β-lactamase genes. Front Microbiol. 2020; 11, 1-11.

Ekka NR, Namdeo KP, Samal PK. Standardization strategies for herbal drugs-an overview. Res J Pharm Technol. 2008;1(4):310-2.

Zakaria ZA, Sufian AS, Ramasamy K, Ahmat N, Sulaiman MR, Arifah AK, et al. In Vitro antimicrobial activity of Muntingia calabura extracts and fractions. African J Microbiol Res. 2010;4(4):304-8.

Saifudin A, Rahayu, Teruna. Standardization of natural medicine ingredients. Yogyakarta, Indonesia: Graha Ilmu; 2011.

Depkes RI. Materia Medika Indonesia. Jilid VI. Jakarta: Departemen Kesehatan RI; 2009.

Gupta PD, Daswani PG, Birdi TJ. Approaches in fostering quality parameters for medicinal botanicals in the Indian Context. Indian J Pharmacol. 2014;46:363–71.

Cushnie TPT, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Agents. 2005;26:343–56.

Locher CP, Burch MT, Mower HF, Berestecky J, Davis H, Van-Poel B. Anti-microbial activity and anti-complement activity of extracts obtained from selected Hawaiian Medicinal Plants. J Ethnopharmacol. 1995;49:23–32.

Davidson PM, Naidu AS. Phytophenols. Natural food antimicrobial systems. Boca Raton, FL: CRC Press; 2000.

Saura-Calixto F., Pérez-Jiménez J. Tannins: bioavailability and mechanisms of action. In: Knasmüller S, DeMarini DM, Johnson I, Gerhäuser C, editors. Chemoprevention of cancer and DNA damage by dietary factors. Weinheim, Germany: Wiley-VCH; 2009.

Savoia D. Plant-derived antimicrobial compounds: alternatives to antibiotics. Future Microbiol. 2012;7:979–90.

Omojate GC, Enwa FO, Jewo AO, Eze CO. Mechanisms of antimicrobial actions of phytochemicals against enteric pathogens – a review. J Pharm Chem Biol Sci. 2014; 2(2): 77-85.

Maesyaroh D, Imansyah EB, Nafratilova HF. Uji aktivitas antibakteri ekstrak etanol biji ganitri (Elaeocarpus sphaericus Schum.) terhadap pertumbuhan bakteri penyebab demam typhoid secara in vitro. BIO SITE Biologi dan Sains Terapan. 2017; 3(2): 6570.

Miklasińska-Majdanik M, Kępa M, Wojtyczka RD, Idzik D, Wąsik TJ. Phenolic compounds diminish antibiotic resistance of Staphylococcus aureus clinical strains. Int J Environ Res Public Health. 2018; 15(10): 118.

Xie Y, Yang W, Tang F, Chen X, Ren L. Antibacterial activities of flavonoids: structure activity relationship and mechanism. Curr med chem. 2015; 22(1): 13249.

Bachtiar SY, Tjahjaningsih W, Sianita N. Pengaruh ekstrak alga cokelat (Sargassum sp.) terhadap pertumbuhan bakteri Escherichia coli. J Mar Coast Sci. 2012; 1(1): 5360.

Ngajow M, Abidjulu J, Kamu VS. Pengaruh antibakteri ekstrak kulit batang matoa (Pometia pinnata) terhadap bakteri Staphylococcus aureus secara in vitro. Jurnal Mipa. 2013; 2: 12832.

Akiyama H, Fujii K, Yamasaki O, Oono T, Iwatsuki K. Antibacterial action of several tannins against Staphylococcus aureus. J Antimicrob Chemother. 2001; 48(4): 48791.

Zhang L, Zhang G, Xu S, Song Y. Recent advances of quinones as a privileged structure in drug discovery. Eur J Med Chem. 2021; 223: 1-15.




DOI: https://doi.org/10.24198/ijpst.v11i3.53891

Refbacks

  • Saat ini tidak ada refbacks.


 Switch to English

Back to Top

View My Stats

Penerbit Universitas Padjadjaran

Jurnal ini terindeks di :

      

Creative Commons Attribution :

Creative Commons License
Indonesian Journal of Pharmaceutical Science and Technology by Universitas Padjadjaran is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Based on a work at http://jurnal.unpad.ac.id/ijpst/