Immobilization of Penicillin-G Acylase from Bacillus thuringiensis BD1 for Enhanced Amoxicillin Production Using Na-Alginate Entrapment

Rizky Aulia Prasasti Dewi, Erma Widyasti Widyasti, Dianursanti Dianursanti, Catur Sriherwanto, Susi Kusumaningrum, Maya D. Rahayu, Noorendra L. Putra, Nuur F. Hasanah, Rizka G. Sativa, Siswa Setyahadi, Dewi Nandyawati

Abstrak


Efficient enzymatic production, particularly using Penicillin-G Acylase (PGA), is crucial for synthesizing amoxicillin, a penicillin-type antibiotic. This study optimized PGA immobilization from Bacillus thuringiensis BD1 using Na-alginate to enhance stability and cost-effectiveness. Various Na-alginate concentrations (1%, 1.25%, 1.5%) were tested, with stability assessments at pH 6-9 and temperatures of 30-60 °C, alongside reusability, morphology, and amoxicillin synthesis evaluations. Initial activity was 46.59 U/mg, with optimal immobilization at 1.5% Na-alginate achieving 41.01 U/mg. After four uses, immobilized PGA BD1 retained ±20% activity with optimal conditions at pH 7 and 40 °C. Enhanced amoxicillin synthesis compared to free enzymes highlights its industrial potential. This research demonstrates the feasibility of using immobilized PGA BD1 for scaling up amoxicillin production, offering significant economic and technological benefits.


Kata Kunci


Enzyme immobilization; Penicillin-G acylase; Sodium alginate; Entrapment; Amoxicillin

Teks Lengkap:

PDF (English)

Referensi


Akhavan BJ, Khanna NR, Vijhani P. Amoxicillin. Treasure Island (FL): StatPearls Publishing; 2024. https://www.ncbi.nlm.nih.gov/books/NBK482250/

Ye T, An Z, Song M, Wei X, Liu L, Zhang X, Zhang H, Liu H, Fang, H. Strategies to enhance the hydrolytic activity of Escherichia coli BL21 penicillin G acylase based on heterologous expression and targeted mutagenesis. Colloids Surf. B Biointerfaces. 2024;114356.

Cano-Cabrera JC, Palomo-Ligas L, Flores-Gallegos AC, Martínez-Hernández JL, Rodríguez-Herrera R. Penicillin G acylase production by Mucor griseocyanus and the partial genetic analysis of its pga gene. Int Microbiol. 2021;24:37.

Putri FP, Nurhasanah A, Nurhayati N, Helianti I, and Syamsu K. Medium optimization for penicillin acylase (PAC) production by recombinant B. megaterium MS941 containing pac gene from B. thuringiensis BGSC BD1 using response surface methodology. Microbiology Indonesia. 2015; 9(2): 65-72.

Marešová H, Palyzová A, Plačková M, Grulich M, Rajasekar VW, Štěpánek V, et al. Potential of Pichia pastoris for the production of industrial penicillin G acylase. Folia Microbiologica. 2017;62: 417-24.

Deng S, Ma X, Su E, Wei D. Efficient cascade synthesis of ampicillin from penicillin G potassium salt using wild and mutant penicillin G acylase from Alcaligenes faecalis. J Biotechnol. 2016;219:142.

Chand D, Varshney N, Ramasamy S, Panigrahi P, Brannigan JA, Wilkinson AJ, and Suresh CG. Structure mediation in substrate binding and post-translational processing of penicillin acylases: Information from mutant structures of Kluyvera citrophila penicillin G acylase. Protein science: a publication of the Protein Society. 2015;24(10): 1660–70.

Pan X, Xu L, Li Y, Wu S, Wu Y, Wei W. Strategies to improve the biosynthesis of β-lactam antibiotics by penicillin G acylase: Progress and prospects. Front Bioeng Biotechnol. 2022;10:936487.

Ma M, Chen X, Yue Y, Wang J, He D, Liu R. Immobilization and property of penicillin G acylase on amino functionalized magnetic Ni0.3Mg0.4Zn0.3Fe2O4 nanoparticles prepared via the rapid combustion process. Front Bioeng Biotechnol. 2023;11:1108820.

Verma ML, Puri M, Barrow CJ. Recent trends in nanomaterials immobilised enzymes for biofuel production. Crit Rev Biotechnol. 2016;36:108.

Gür SD, İdil N, Aksöz N. Optimization of enzyme co-immobilization with sodium alginate and glutaraldehyde-activated chitosan beads. Appl Biochem Biotechnol. 2017;184:538.

Liu R, Huang W, Pan S, Li Y, Yu L, and He D. Covalent immobilization and characterization of penicillin G acylase on magnetic Fe2O3/Fe3O4 heterostructure nanoparticles prepared via a novel solution combustion and gel calcination process. International Journal of Biological Macromolecules. 2020;162: 1587–96.

Liu C, Wang X, Chen Z, Zhou Y, Ruso JM, Hu D, et al. The immobilization of penicillin G acylase on modified TiO2 with various micro-environments. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021; 616: 126316

Jin X, Wu Q, Chen Q, Chen C-X, Lin X-F. Immobilization of penicillin G acylase on a composite carrier with a biocompatible microenvironment of chitosan. J Chem Technol Biotechnol. 2008;83:1710.

Žuža M, Milosavić N, Knežević-Jugović Z. Immobilization of modified penicillin G acylase on Sepabeads carriers. Chem Pap. 2009;63:117.

Bernardino S, Estrela N, Ochoa-Mendes V, Fernandes P, Fonseca LP. Optimization in the immobilization of penicillin G acylase by entrapment in xerogel particles with magnetic properties. J Sol-Gel Sci Technol. 2011;58:545.

Chen Z, Chen Z, Liu C, Wang X, Zhou Y, and Wang R. Optimization of penicillin G acylase immobilized on glutaraldehyde-modified titanium dioxide. Biotechnology and applied biochemistry. 2019;66(6): 990–8.

Chen X, Yang L, Zhan W, Wang L, Guo Y, Wang Y, et al. Immobilization of penicillin G acylase on paramagnetic polymer microspheres with epoxy groups. Chinese Journal of Catalysis. 2018;39: 47-53.

Dewi RAP, Widyasti E, Waltam DR, Wahjono E, Dianursanti D, Hasanah NF, et al. The production and characterization of penicillin G acylase from Bacillus thuringiensis BGSC BD1 wild type. AIP Conf Proc. 2024;3080: 040001.

Ratnaningsih N. Pengaruh variasi konsentrasi alginat dan konsentrasi lipase terhadap aktivitas hidrolisis dan aktivitas spesifik lipase amobil pada proses amobilisasi lipase dari Rhizopus delemar. J Penelit Saintek. 2004;9:31.

Bilal M and Iqbal HM. Lignin peroxidase immobilization on Ca-alginate beads and its dye degradation performance in a packed bed reactor system. Biocatalysis and Agricultural Biotechnology. 2018;20, 101205.

Balasingham K, Warburton D, Dunnill P, Lilly MD. The isolation and kinetics of penicillin amidase from Escherichia coli. Biochim Biophys Acta Enzymol. 1972;276:250.

Wahab RA, Elias N, Abdullah F, Ghoshal SK. On the taught new tricks of enzymes immobilization: An all-inclusive overview. React Funct Polym. 2020;152:104613.

Aini R, Wirajana IN, Ratnayani K. Optimasi suhu, pH dan amobilisasi selulase dari konsorsium mikroba selulolitik (KMS. UU1A) pada kalsium alginat. Cakra Kimia Indones E-J Appl Chem. 2020;8:66.

Pan X, Xu L, Li Y, Wu S, Wu Y, and Wei W. Strategies to Improve the Biosynthesis of β-Lactam Antibiotics by Penicillin G Acylase: Progress and Prospects. In Frontiers in Bioengineering and Biotechnology. 2022:10.

Mayer J, Pippel J, Günther G, Müller C, Lauermann A, Knuuti T, et al. Crystal structures and protein engineering of three different penicillin G acylases from Gram-positive bacteria with different thermostability. Appl Microbiol Biotechnol. 2019;103:7537.

Utami AP. Produksi dan imobilisasi pektinase Bacillus sp. 2P11 menggunakan manik alginat. Diss. IPB University; 2022.

Nawaz MA, Rehman HU, Bibi Z, Aman A, Qader SAU. Continuous degradation of maltose by enzyme entrapment technology using calcium alginate beads as a matrix. Biochem Biophys Rep. 2015;4:250.

Hassan ME, Yang Q, Xiao Z, Liu L, Wang N, Cui X, et al. Impact of immobilization technology in industrial and pharmaceutical applications. 3 Biotech. 2019;9:1.

Kallenberg AI, van Rantwijk F, Sheldon RA. Immobilization of penicillin G acylase: The key to optimum performance. Adv Synth Catal. 2005;347:905.




DOI: https://doi.org/10.24198/ijpst.v12i3.55501

Refbacks

  • Saat ini tidak ada refbacks.


 Switch to English

Back to Top

View My Stats

Penerbit Universitas Padjadjaran

Jurnal ini terindeks di :

      

Creative Commons Attribution :

Creative Commons License
Indonesian Journal of Pharmaceutical Science and Technology by Universitas Padjadjaran is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Based on a work at http://jurnal.unpad.ac.id/ijpst/