Pengaruh Konsentrasi Etanol Terhadap Aktivitas Antioksidan Seledri (Apium graveolens) secara In Vitro dan In Vivo
Abstrak
Reactive oxygen species (ROS) yang terbentuk akibat aktivitas fisik yang berlebih akan mengoksidasi LDL (low-density lipoprotein) dan memicu terbentuknya arteriosklerosis. Peningkatan konsumsi antioksidan terbukti dapat menghindari penyakit jantung, salah satunya bersumber dari bumbu dapur seperti seledri (Apium graveolens). Penelitian ini bertujuan untuk mengetahui pengaruh konsentrasi etanol terhadap aktivitas antioksidan herba seledri secara in vitro dan in vivo. Simplisia dimaserasi menggunakan campuran pelarut etanol dan air dengan berbagai konsentrasi (air 100%, etanol 50%, etanol 70%, etanol 90%, dan etanol 96%). Aktivitas antioksidan ditentukan menggunakan metode LDL oxidation dan β-carotene bleaching secara in vitro,sedangkan secara in vivo menggunakan hewan uji tikus metode high intensity swimming exercises. Hasil penelitian menunjukkan bahwa ekstrak etanol 70% secara signifikan (p<0,05) mampu menghambat lalu degradasi β-karoten dan LDL dibandingkan dengan ekstrak lainnya. Pada pengujian in vivo, ekstrak etanol 70% juga mampu menurunkan kadar malondialdehid (14,35±0,63 ng/mL) dibandingkan dengan kontrol negatif (46,04±1,69 ng/mL). Selain itu, ditemukan peningkatan kadar glutation setelah pemberian ekstrak etanol 70% (111,93±11,68 ng/mL) dibandingkan dengan kontrol negatif (46,04±1,69 ng/mL). Sehingga dapat disimpulkan bahwa ekstrak etanol 70% herba seledri berpotensi untuk dikembangkan sebagai obat pencegah arteriosklerosis.
Kata Kunci
Teks Lengkap:
PDF (English)Referensi
Charchar FJ, Prestes PR, Mills C, Ching SM, Neupane D, Marques FZ, et al. Lifestyle management of hypertension: International society of hypertension position paper endorsed by the world hypertension league and european society of hypertension. J Hypertens. 2024;42(1):23-49.
Sirichaiwetchakoon K, Eumkeb G. Free radical scavenging and anti-isolated human LDL oxidation activities of Butea superba Roxb. extract. BMC Complement Med Ther. 2024;24(1):e75.
Thirupathi A, Wang M, Lin JK, Fekete G, István B, Baker JS, et al. Effect of different exercise modalities on oxidative stress: A systematic review. Biomed Res Int. 2021:e1947928.
Wang F, Wang X, Liu Y, Zhang Z. Effects of exercise-induced ROS on the pathophysiological functions of skeletal muscle. Oxid Med Cell Longev. 2021;2021:e3846122.
Andrade-Guerrero J, Rodríguez-Arellano P, Barron-Leon N, Orta-Salazar E, Ledesma-Alonso C, Díaz-Cintra S, et al. Advancing alzheimer’s therapeutics: Exploring the impact of physical exercise in animal models and patients. Cells. 2023;12(21):e2531.
Vona R, Pallotta L, Cappelletti M, Severi C, Matarrese P. The impact of oxidative stress in human pathology: Focus on gastrointestinal disorders. Antioxidants. 2021;10(2):e201.
Lukman M, Plasay M. The effect of administration of honey on physical activity in malondialdehyde, glutathione, and superoxide dismutase blood levels in male rat. J Med Chem Sci. 2024;7(4):590-97.
Olufunmilayo EO, Gerke-Duncan MB, Holsinger RMD. Oxidative stress and antioxidants in neurodegenerative disorders. Antioxidants. 2023;12(2):e517.
Aboody MSA. Cytotoxic, antioxidant, and antimicrobial activities of celery (Apium graveolens L.). Bioinformation. 2021;17(1):147-56.
Indraningsih. Penetapan kadar flavonoid total dan aktivitas antioksidan dari ekstrak dan fraksi daun seledri (Apium graveolens L.) dengan metode ABTS. Skripsi. 2020. Sekolah Tinggi Ilmu Kesehatan Nasional. Surakarta.
Khoiriyah U, Nurhasanah D. Uji aktivitas antioksidan ekstrak seledri (Apium graveolens L.) dengan metode DPPH (1,1-Difenil-2-Pikrilhidrazil) dan FRAP (Ferric Reducing Antioxidant Power). Skripsi. 2021. Universitas Jenderal Achmad Yani. Yogyakarta.
Nurjanah L, Pratama NP, Rahayu K. Pengaruh perbedaan pelarut dalam ekstraksi herba seledri (Apium graveolens L.) terhadap aktivitas peredaman radikal bebas DPPH. Skripsi. 2021. Universitas Jenderal Achmad Yani. Yogyakarta.
Septiana E, Rahmawati SI, Izzati F, Ahmadi P, Wulandari D, Bustanussalam B, et al. Biological activity of celery extract using different extraction methods. Proceedings of the 1st International Conference for Health Research 2022 in Advances in Health Sciences Research. 2023;56:312-26.
Afifah A, Pribadi FW, Salsabiela A, Anggara DH, Komara ZM, Al Fauzy R. The protective effect of celery ethanol extract on oxidative stress in chronic kidney disease rat model. Universa Medicina. 2022;41(2):114-20.
Janda E, Martino C, Riillo C, Parafati M, Lascala A, Mollace V, et al. Apigenin and luteolin regulate autophagy by targeting NRH-quinone oxidoreductase 2 in liver cells. Antioxidants. 2021;10(5):e776.
Abubakar AR, Haque M. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. J Pharm Bioallied Sci. 2020;12(1):1-10.
Indonesia BPOdMR. Peraturan BPOM No HK.04.02.42.421.12.17.1673 tentang pelarut yang diizinkan digunakan dalam proses ekstraksi/fraksinasi tumbuhan dalam produk obat bahan alam in: Indonesia, BPOdMR (Ed.).2017. BPOM RI, Jakarta
Liu WN, Shi J, Fu Y, Zhao XH. The stability and activity changes of apigenin and luteolin in human cervical cancer hela cells in response to heat treatment and Fe2+)/Cu2+ addition. Foods. 2019;8(8):e346.
Plaskova A, Mlcek J. New insights of the application of water or ethanol-water plant extract rich in active compounds in food. Front Nutr. 2023;10:e1118761.
Alara OR, Abdurahman NH, Olalere OA. Ethanolic extraction of flavonoids, phenolics and antioxidants from Vernonia amygdalina leaf using two-level factorial design. J King Saud Univ Sci. 2020;32(1):7-16.
Li LJ, Wang MZ, Yuan TJ, Xu XH, Dad HA, Yu CL, et al. The crude ethanol extract of Periplaneta americana L. stimulates wound healing in vitro & in vivo. Chin Med. 2019;14:e33.
Yuxuan G, Zhihao D, Shiyun G, Yujie L, Sen M, Tong Z, et al. Optimization of ethanol-based extraction process for duliang formula by central composite design and response surface methodology. Nat Prod Commun. 2022;17(12):1-9.
Maser W, Maiyah N, Nagarajan M, Kingwascharapong P, Senphan T, Moula Ali A, et al. Effect of different extraction solvents on the yield and enzyme inhibition (a-amylase, a-glucosidase, and lipase) activity of some vegetables. Biodiversitas. 2023;24(6):3320-31.
Martemucci G, Costagliola C, Mariano M, D’andrea L, Napolitano P, D’Alessandro AG. Free radical properties, source and targets, antioxidant consumption and health. Oxygen. 2022;2(2):48-78.
Kiokias S, Proestos C, Oreopoulou V. Effect of natural food antioxidants against LDL and DNA oxidative changes. Antioxidants. 2018;7(10):e133.
Musetti B, González-Ramos H, González M, Bahnson EM, Varela J, Thomson L. Cannabis sativa extracts protect LDL from Cu2+-mediated oxidation. J Cannabis Res. 2020;2(1):e37.
Liu D-K, Xu C-C, Zhang L, Ma H, Chen X-J, Sui Y-C, et al. Evaluation of bioactive components and antioxidant capacity of four celery (Apium graveolens L.) leaves and petioles. Int J Food Prop. 2020;23(1):1097-109.
Saiah H, Allem R, Kebir FZE. Antioxidant and antibacterial activities of six algerian medicinal plants. Int J Pharm Pharm Sci. 2016;8(1):367-74.
Hou P, Fang J, Liu Z, Shi Y, Agostini M, Bernassola F, et al. Macrophage polarization and metabolism in atherosclerosis. Cell Death Dis. 2023;14(10):e691.
He Y, Liu T. Oxidized low-density lipoprotein regulates macrophage polarization in atherosclerosis. Int Immunopharmacol. 2023;120:e110338.
Amarowicz R. Natural phenolic compounds protect LDL against oxidation. Eur J Lipid Sci Technol. 2016;118(5):677-79.
Boadi WY, Stevenson C, Johnson D, Mohamed MA. Flavonoids reduce lipid peroxides and increase glutathione levels in pooled Human Liver Microsomes (HLMs). Adv Biol Chem. 2021;11(6):283-95.
DOI: https://doi.org/10.24198/ijpst.v12i3.60387
Refbacks
- Saat ini tidak ada refbacks.
| Switch to English Back to Top |
| View My Stats Penerbit Universitas Padjadjaran
Jurnal ini terindeks di :Creative Commons Attribution :
Based on a work at http://jurnal.unpad.ac.id/ijpst/ |
Indonesian Journal of Pharmaceutical Science and Technology




