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Abstract. In this study, we present a novel approach combining Content-Based Data Retrieval 

(CBDR) and 1-dimensional Convolutional Neural Networks (1D-CNN) for crystal structure 

analysis of powder materials by using X-Ray Diffraction (XRD) data. The introduction sets the 

background by highlighting the importance of X-ray diffraction analysis and the limitations of 

conventional approaches in dealing with complex crystal structures. To overcome this challenge, 

researchers have explored artificial intelligence techniques, specifically CNN for crystal 

structure classification based on XRD image graph represented as intensity values versus 2-theta 

(XRD pattern). The aims of this study are: implementing CBDR method on CNN model for 

crystal structure classification; simulating CBDR-CNN model for crystal structure classification; 

verifying CBDR-CNN model in crystal structure classification. Each class for CNN model such 

as crystal system, class material, sub-class material, and space-group achieved accuracies 

99.86%, 99.99%, 99.95%, and 99.82% respectively. The results and discussion section presents 

the results of the CBDR-CNN model. The CBDR model effectively retrieved the most similar 

XRD spectrum data from the dataset based on the query properties, including Miller indices and 

peak position. The model effectively reduced the scope potential candidate materials, sub-

materials, and space-groups. The 1D-CNN model showed high accuracy in predicting crystal 

properties such as material, sub-material, space-group, and crystal system. In conclusion, the 

CBDR-CNN approach potential revolutionizes XRD data analysis and crystal system prediction, 

which promotes progress in computer-aided materials study. 
 

Keywords: convolutional neural networks (CNN), content-based data retrieval (CBDR), x-ray 

diffraction, crystal structure prediction, and crystal system 

 

Abstrak. M Dalam studi ini, kami menyajikan pendekatan baru yang menggabungkan Content-

Based Data Retrieval (CBDR) dan 1-dimensional Convolutional Neural Networks (1D-CNN) 

untuk analisis struktur kristal bahan serbuk dengan menggunakan data X-Ray Diffraction (XRD). 

Pendahuluan menetapkan latar belakang dengan menyoroti pentingnya analisis difraksi sinar-

X dan keterbatasan pendekatan konvensional dalam menangani struktur kristal yang kompleks. 

Untuk mengatasi tantangan ini, para peneliti telah mengeksplorasi teknik kecerdasan buatan, 

khususnya CNN untuk klasifikasi struktur kristal berdasa rkan grafik gambar XRD yang 

direpresentasikan sebagai nilai intensitas versus 2-theta (pola XRD). Tujuan dari penelitian ini 

adalah: mengimplementasikan metode CBDR pada model CNN untuk klasifikasi struktur kristal; 

mensimulasikan model CBDR-CNN untuk klasifikasi struktur kristal; melakukan verifikasi 

model CBDR-CNN dalam klasifikasi struktur kristal. Setiap kelas untuk model CNN seperti 

sistem kristal, kelas material, sub-kelas material, dan space-group mencapai akurasi 99,86%, 

99,99%, 99,95%, dan 99,82% secara berurutan. Bagian hasil dan diskusi menyajikan hasil dari 
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model CBDR-CNN. Model CBDR secara efektif mengambil data spektrum XRD yang paling 

mirip dari kumpulan data berdasarkan properti kueri, termasuk indeks Miller dan posisi puncak. 

Model ini secara efektif mengurangi cakupan kandidat material, sub-material, dan space-group 

yang potensial. Model 1D-CNN menunjukkan akurasi yang tinggi dalam memprediksi sifat-sifat 

kristal seperti material, sub-material, space-group, dan sistem kristal. Kesimpulannya, 

pendekatan CBDR-CNN berpotensi merevolusi analisis data XRD dan prediksi sistem kristal, 

yang mendorong kemajuan dalam studi material berbantuan komputer.  

 

Kata kunci: convolutional neural networks (CNN), content-based data retrieval (CBDR), 

difraksi sinar-x, prediksi struktur kristal, dan sistem kristal 

1. Introduction 

This research is motivated by the author's curiosity about the phenomena involved in X-
ray diffraction analysis. X-ray diffraction is a phenomenon in which X-rays is 
exposed/irradiated to a crystalline sample, and the rays are diffracted and refracted by the 
atoms in the crystal, creating an interference pattern on the screen [1]. This technique is 
essential for understanding and analyzing the arrangement of atoms and properties of 
various materials or crystals. 

However, conventional analysis methods of X-ray diffraction are time-consuming and 
difficult when analyzing complex crystal structures [2]. The X-Ray Powder Diffraction 
(XRPD) method, a specialized application of XRD, has certain limitations in crystal 
structure analysis. These limitations include overlapping peaks of the interference pattern 
on the screen and noise from the background on the interference result screen, which can 
hinder crystal structure analysis [3]. 

To overcome the challenges of improving crystal structure analysis quality, researchers 
have explored the use of artificial intelligence. In particular, they have looked at the 
Convolutional Neural Networks (CNN) method, which is well-known for its success in 
diverse applications. In [2], CNN was used to classify crystal structures using a set of 
spectra from XRPD data in the form of images. In that study, three classifications were 
made: space-group, extinction group, and crystal system. The achieved accuracy for these 
classifications were 81.14%, 83.83%, and 94.99%, respectively. 

The author proposes this study to improve the accuracy and performance of crystal 
structure analysis by including one of the methods of Content-Based Data Retrieval 
(CBDR) into the CNN model itself. This study differs from previous research in that it 
uses raw data from XRD spectra rather than images or XRD graphs themselves. Using 
the CBDR method provides advantages since it utilizes the features of the XRD data, such 
as the Miller indices, peak information, and other crystal parameters. The study introduces 
a new approach to crystal structure analysis by combining the CNN method and CBDR 
technique. The combination of XRD spectra instead of direct XRD graphs or images is 
anticipated to enhance the accuracy, efficiency, and performance in crystal structure 
analysis significantly. Moreover, by utilizing XRD spectra instead of direct XRD graphs 
or images, there is a change in data representation, reflecting both an increase in accuracy 
and more informative. 

1.1 Related Studies 

In study [2], discusses the use of convolutional neural networks (CNNs) for classifying 
crystal structures. In that study, researchers conducted a literature review on relevant 
research topics. The literature review provides supporting evidence that crystal structure 
classification is an important topic to be researched, particularly in the field of materials 
science. Previous relevant research on this topic has used machine learning techniques, 
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including conventional artificial neural networks [4], principal component analysis (PCA) 
[5], partial least-squares regression (PLSR) [6], and various specialized statistical 
approaches [7]. Certain approaches are constrained by the requirement of manual or 
traditional feature analysis techniques like the conventional artificial neural network 
techniques. 

In [8], a new approach for crystal structure classification using artificial neural networks 
with machine learning methods was proposed. The approach proposed in the study 
demonstrates the capability to classify crystal structures based on crystal symmetry, even 
though the crystal symmetry exists in the form of defects or geometric deformations. This 
machine learning-based approach represents each crystal structure as a two-dimensional 
diffraction fingerprint and uses a subset of those structures to generate a classification 
model through a convolutional neural network (CNN) with convectional training data. 

In reference to [9], the study presents an approach that utilizes machine learning to predict 
crystal dimensionality and space group from a variety of thin film XRD patterns. The 
proposed approach modifies XRD data using data augmentation techniques by employing 
simulated data acquired from the Inorganic Crystal Structure Database (ICSD) and 
experimental data. The proposed method for convolutional neural networks (CNN) 
achieved high accuracy for dimensionality classification and space group, achieving 93% 
and 89%, respectively. The study also revealed several causes of invalid classification, 
including phase mixtures in the sample, noise in the experimental data, and systematic 
errors in the experimental setup. The study discussed limitations of the proposed approach, 
including the need for a large and varied ICSD dataset and proper selection of 
experimental data. 

2. Research Methods 

This research was conducted in three general stages: pre-processing, processing, and post-
processing. During the pre-processing stage, the dataset was prepared from the American 
Mineralogist Crystal Structure Database (AMCSD). This dataset will be used in the 
CBDR and CNN models. Once the data is processed into a dataset, a training model is 
prepared for each model. Next, in the processing stage, the given query XRD data is tested 
in the CBDR-CNN model using a csv data format. The data return stage is carried out 
based on similar values in the dataset, followed by a prediction of the query data in the 
context of crystal properties. Finally, in the post-processing stage, the prediction results 
of the CBDR-CNN model are analyzed. The simulation utilized Python Programming 
Language with version 3.10.7, Sklearn with version 1.0.0, and Tensorflow with version 
2.11.0. 

2.1 Content-Based Data Retrieval (CBDR) 

Content-Based Data Retrieval (CBDR) is a recently developed technique that shares 
similarities with Content-Based Image Retrieval (CBIR), also known as Query By Image 
Content (QBIC). CBIR is an automated technique that retrieves similar images based on 
their visual content, utilizing low-level features such as color, texture, shape, and spatial 
location. Similarly, CBDR utilizes content-based features to retrieve similar data based 
on their property content from a database. When an image is used as a query in CBIR, it 
is converted into a feature vector through a feature extraction process. The similarity 
measure is applied to calculate the distance between feature vectors of a query image and 
a target image in a database. This enables retrieving similar images efficiently [10]. 
CBDR is inspired by CBIR and implements the same principle, focusing on searching 
data based on its properties. CBDR considers content-based characteristics, like attribute 
values, data patterns, and structural information, to represent and search for similar data 
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within a database. By utilizing these features, CBDR enables efficient retrieval of data 
that shares similar characteristics with the query data from the database. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. CBIR general architecture 

 
In the context of CBDR, data is first transformed into a feature vector through the process 
of feature extraction, and subsequently, a similarity measure is computed. This similarity 
measure facilitates the calculation of the distance between the feature vectors of the query 
data and the data contained in the database. The current study employs Euclidean 
Distance as the similarity measure. In particular, Euclidean Distance determines the 
distance between points in a straight line. The distance calculation methodology relies on 
the Pythagorean theorem. The equation for Euclidean Distance can be described as 
follows: 

𝐷(𝑞,  𝑑) = ||𝑞 − 𝑑||
2
= √∑ (𝑞𝑖 − 𝑑𝑖)2

𝑛
𝑖=1                                (1) 

The L-2 Norm is another term for Euclidean Distance. The L-2 Norm is a measure of 
distance that calculates the straight-line distance between two points. In the context of 
Euclidean Distance, the L-2 Norm is employed to determine the distance between two 
vectors by taking the square root of the sum of the squared differences between the 
components of the corresponding vectors [11]. 
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2.2 Convolutional Neural Networks (CNN) 

Convolutional Neural Networks (CNNs) are a type of artificial neural network that learn 
internal feature representations in a hierarchical structure, enabling them to generalize 
features in image-related tasks such as object recognition and other computer vision 
problems. CNNs leverage a convolutional layer to extract features from input images 
while preserving each pixel's spatial relationship [12]. 

Figure 2. CNN layers 

 
In mathematics, the convolution operation is a process that combines two functions 𝑓 and 
𝑔  to produce a third function ℎ. This process consists of two types of convolutions, 
continuous and discrete convolution. In numerical processing, the second type of 
convolution used is discrete convolution. It is commonly defined as follows: 

(𝑓 ∗ 𝑔)(𝑥) = ∑ 𝑓(𝑖) ∙ 𝑔(𝑥 − 𝑖)𝑚
𝑖=1                                  (2) 

The function 𝑓(𝑥) is a function that represents the numerical input in the form of a vector, 
and the function 𝑔(𝑥) is the convolution kernel or filter. The kernel 𝑔(𝑥) is a window 
that operates on the input signal 𝑓(𝑥) shifted by a certain shift step, where the sum of the 
multiplication of the two functions at each discrete point is the result of the convolution, 
which is expressed as the output function ℎ(𝑥). 

 

 

 

Figure 3. Example of signal convolution operation in one dimension 
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2.3 Prerequisites 

These are tools were used in this research as follows: 

1. American Mineralogist Crystal Structure Database (AMCSD). 

2. Python v. 3.10.7. 

3. Sklearn v.1.0.0. 

4. Tensorflow v.2.11.0. 

The American Mineralogist Crystal Structure Database (AMCSD) is a user interface for 
a crystal structure database. It comprises all the structures published in American 
Mineralogist, The Canadian Mineralogist, European Journal of Mineralogy, Physics and 
Chemistry of Minerals, and selected data sets from other journals. The database is funded 
by the National Science Foundation and is overseen by the Mineralogical Society of 
America and the Mineralogical Association of Canada. Python is a widely used high-level 
programming language. Python is capable in data analysis, machine learning, and 
scientific computations due to its extensive library and framework. Scikit-learn or sklearn 
is one of the prerequisite libraries. Scikit-learn is a machine learning library that offers 
multiple algorithms for classification, regression, clustering, and other purposes. Scikit-
learn is incorporated into the CBDR model due to its Euclidean Distance calculation 
algorithm. Next, the library utilized in this simulation is Tensorflow, which is a Python-
based library. Tensorflow is a highly robust open-source library for machine learning and 
deep learning applications. Tensorflow offers a flexible architecture that is particularly 
suitable for the CNN architecture utilized in this simulation. 

The simulation scheme is as follows: 

 

Figure 4. Simulation scheme 

 
Figure 4 shows the construction of the simulation scheme. The scheme starts with 
retrieval of raw data from the AMCSD database, which undergoes data preparation based 
on the dataset diagram. Next, the input diagram shows how the query data is fed into the 
CBDR-CNN model, depicted in both the CBDR and CNN diagrams. The results of the 
CBDR and CNN models are depicted in the result diagram, showing properties such as 
material, space-group, and crystal system. The output is generated as an XRD graph 
visualization based on the query data entered. 
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Here it is the CNN architecture we used in this research, represented in Figure 5 below. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. CNN architecture in this research 

 
The CNN architecture utilized in this study plays a crucial role in classifying crystal 
structures based on XRD data. The architecture follows a sequential pattern of layers 
designed to extract and process relevant features from the input data. The initial layer of 
the model is a 1-dimensional convolutional layer. This layer is responsible for performing 
feature extraction on the input XRD data. It is composed of 32 filters, each with a size of 
3, that slide across the input data to capture patterns and relationships within the intensity 
values. The Rectified Linear Unit (ReLU) is used as the activation function in this model, 
introducing non-linearity [13]. A max pooling layer is added after the convolutional layer. 
The max pooling layer reduces the dimensions of the feature maps obtained from the 
previous layer, retaining the most relevant information. Each feature map is subject to a 
pooling window of size 2 to capture the maximum value within that window. Another 
convolutional layer with 64 filters, each of size 3, is then added to the model. This layer 
extracts higher-level features from the down-sampled feature maps that were obtained 
from the previous pooling layer. The ReLU activation function is once again used to 
introduce non-linearity. Following the second convolutional layer, a second max pooling 
layer is introduced, similar to the first one. This further reduces the dimensions of the 
feature maps while preserving critical information. After the second pooling layer, the 
feature maps undergo a flattening operation. This transformation prepares the data for 
input into the fully connected layers. Two fully connected layers are added following the 
flattening layer. The initial fully connected layer consists of 128 neurons and employs the 
ReLU activation function. This layer functions as a feature extractor, introducing non-
linearity into the model. The last fully-connected layer contains a size of neurons that is 
identical to the number of classes of crystal properties. The utilized activation function is 
the softmax function that creates probability distributions for each class [14]. 

3. Results and Discussion 

We evaluated the performance of the developed 1D-CNN model for classifying crystal 
structures across multiple categories. As far as the crystal system is concerned, the model 
demonstrated exceptional accuracy, achieving a test accuracy of 99.86% with a minimal 
test loss of 0.0026. The material classification was equally impressive, with a test 
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accuracy of 98.99% and a test loss of 0.0193. The sub-material classification exhibited 
exceptional accuracy, with a test accuracy of 99.95% and a corresponding test loss of 
0.0016. 
 

  
(a) (b) 

  

  

(c) (d) 

Figure 6. Accuracy graph of CNN training on: (a) crystal system, (b) material, (c) sub-material, (d) 

space-group 

 
Furthermore, the space group classification exhibited a high accuracy of 99.82% with a 
test loss of 0.0072. All the training and validation results were obtained after completing 
10 epochs, underscoring the robustness and effectiveness of the CNN architecture in 
processing XRD data to classify crystal structures. The ability of the CBDR-CNN model 
to retrieve relevant data based on query properties and predict crystal properties was 
thoroughly evaluated. The CBDR model effectively retrieved the most similar spectra 
from the dataset by inputting XRD data with specific Miller indices and peak positions. 
This retrieval narrowed down potential candidate materials, sub-materials, and space 
groups, and offered insightful predictions. For instance, the CBDR-CNN model 
successfully predicted the crystal properties to be Beryl with hexagonal symmetry (space 
group P6) by using the input data for a specific query, demonstrating the model’s 
capability of rapid material identification. In addition to textual outputs, the results were 
also supported by visual representations. The XRD data graph corresponding to the query 
input is provided, representing peak intensities at Miller indices. This visual 
representation improves the interpretability of the results and assists researchers in 
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evaluating the precision and accuracy of predictions. The CNN model's exceptional 
accuracy in classifying different crystal properties highlights its potential as a useful tool 
in crystallography. The model's robustness across different classes and its capability to 
learn complex patterns from XRD data offer potential for the improvement in speed and 
accuracy of material characterization. The incorporation of CBDR into the CNN 
architecture introduces a novel approach to retrieve and predict data, particularly in the 
field of crystallography. The capability to narrow down probable candidates for material 
properties, based on query data can significantly expedite the process of material 
discovery and characterization. 
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Figure 6. CBDR-CNN results for Beryl raw material; Simulation result 
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Figure 7. CBDR-CNN results for Beryl raw material: Experimental result 

4. Conclusions 

The CBDR-CNN method was used to analyze XRD data for crystal structure analysis, 

resulting in accurate prediction of essential crystal properties. The CBDR-CNN method 

represents notable progress in powder material research and provides potent research for 

precise material characterization. Integrating CBDR with deep learning techniques 

presents new possibilities for discovering materials and making scientific advances in 

various domains, including material science. The primary data source for this study was 

the American Mineralogist Crystal Structure Database. In the future, researchers could 

broaden their investigations by incorporating data from other databases. This approach 

could provide a wider range of materials and crystal structures for analysis, thereby 

enabling the creation of more robust and versatile models. Although this research 

primarily focuses on computational data, integrating experimental XRD data could be an 

opportunity to verify and enhance the model's accuracy. 
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