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Abstract. To provide accurate and reliable visibility information in support of aviation safety 

at Soekarno-Hatta International Airport, a visibility prediction system was developed using the 

Random Forest Regressor algorithm based on 2024 METAR data. Visibility is a critical 

parameter for flight safety, particularly under adverse weather conditions. The dataset includes 

wind direction and speed, temperature, dew point, air pressure, weather phenomena, and cloud 

parameters that were numerically encoded. After preprocessing and quality control, the data 

was input into a Random Forest model optimized using Grid Search. Evaluation results show 

strong predictive performance with an R² value of 0.8736, MAE of 607.45 m, and RMSE of 

772.29 m. Feature importance analysis identified haze, temperature, and mist as the most 

influential factors affecting visibility. These findings demonstrate that integrating 

meteorological observational data with machine learning approaches can provide accurate 

visibility predictions to support aviation operational decision-making. 

 

Keywords: airport visibility, METAR, random forest, machine learning. 

 

Abstrak. Untuk menyediakan informasi visibilitas yang akurat dan dapat diandalkan dalam 

mendukung keselamatan operasional penerbangan di Bandara Soekarno-Hatta, maka 

dilakukan pembuatan sistem prediksi visibilitas berbasis algoritma Random Forest Regressor 

menggunakan data METAR tahun 2024. Visibilitas merupakan parameter krusial dalam 

keselamatan penerbangan, terutama dalam kondisi cuaca buruk. Data yang digunakan 

meliputi arah dan kecepatan angin, suhu, titik embun, tekanan udara, fenomena cuaca, dan 

parameter awan yang telah dikodekan secara numerik. Setelah melalui proses prapemrosesan 

dan quality control, data dimasukkan ke dalam model Random Forest yang telah dioptimasi 

melalui teknik Grid Search. Hasil evaluasi menunjukkan bahwa model memiliki kinerja 

prediktif yang sangat baik dengan nilai R² sebesar 0.8736, MAE 607.45 m, dan RMSE 772.29 

m. Analisis feature importance mengidentifikasi haze, suhu, dan mist sebagai faktor dominan 

yang mempengaruhi visibilitas. Hasil ini menunjukkan bahwa integrasi data observasi 

meteorologi dengan pendekatan machine learning mampu memberikan prediksi visibilitas 

yang akurat untuk mendukung keputusan operasional penerbangan. 
 

Kata kunci: visibilitas bandara, METAR, random forest, machine learning. 

 

Submitted: 07/05/2025 

Accepted: 09/05/2025 

Published: 06/08/2025 



Advancing Aviation Meteorology: Airport Visibility Prediction... 63 

 

 

1. Introduction 

The safety and efficiency of modern aviation operations depend heavily on atmospheric 

conditions. Airport visibility plays an important role for aviation meteorology as it is 

useful in the process of aircraft take-off and landing, especially in bad weather [1]. 

Atmospheric phenomena such as fog, heavy rain, dust, or smoke can cause a decrease in 

visibility, which is often the main reason for flight cancellations and delays as a result, 

accurate and timely visibility prediction is essential for effective air traffic management 

and flight safety. 

So far, visibility prediction is usually done using deterministic methods based on 

numerical models or with simple statistical approaches [2]. Numerical methods such as 

NWP (Numerical Weather Prediction) often require high computation and have spatial 

and temporal resolutions that are not detailed enough for airport prediction needs [3].  

On the other hand, classical statistical approaches are often unable to understand the 

complex relationships between meteorological components that affect visibility.  

Therefore, an alternative approach is needed that can understand the nonlinear and 

complex relationships between weather variables. 

Machine learning approaches have shown great potential in modelling atmospheric 

phenomena in recent years [4]. These approaches include the prediction of weather 

parameters that depend on surface observations, such as METAR data. Algorithms such 

as Random Forest Regressor have the ability to handle very large datasets and discover 

nonlinear patterns, and they can provide excellent predictions without strict statistical 

distribution assumptions [5].  In addition to providing accurate and important estimates 

for each input parameter, Random Forest also has the advantage of overcoming 

multicollinearity between features [6]. As a result, this method is considered suitable for 

visibility prediction involving many meteorological variables with complex and non-

linear dynamics. 

METAR data routinely generated by meteorological stations at airports provides a 

comprehensive picture of the current weather conditions, including atmospheric 

pressure, temperature, dew point, wind direction and speed, significant weather events, 

and details on cloud formations [7]. If this data is analysed in a structured way through 

machine learning techniques, it can be used as a predictor of visibility determination. 

Previous research has shown that the incorporation of METAR parameters has a strong 

relationship with actual visibility values, especially during extreme weather conditions 

[8]. By using this data as input, the Random Forest-based visibility prediction model is 

expected to provide more precise and relevant prediction results in the context of flight 

operations. 

This research aims to develop an airport visibility prediction model using Random 

Forest Regressor by utilising a comprehensive integration of METAR parameters from 

Soekarno Hatta Class I Meteorological Station. By analysing the complex relationships 

between various meteorological parameters such as air pressure, temperature, dew point, 

wind direction, wind speed, and weather phenomena, total cover, and cloud base height, 

this research is expected to produce an accurate and reliable prediction system to 

support operational decision making in the aviation world. The implementation of an 

effective visibility prediction model will contribute significantly to improving flight 
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safety, airport operational efficiency, and reducing the economic impact of weather 

disruptions on the aviation industry. 

2. Research Methods 

2.1 Data Preparation 

To determine visibility prediction, this study utilizes METAR data obtained from the 

Soekarno -Hatta Meteorological Station. The METAR reports are routinely collected at 

30 minute intervals to represent atmospheric conditions within each respective time 

segment. This research employs METAR data from the year 2024 to assess visibility 

conditions at Soekarno-Hatta International Airport during that period. Each METAR 

entry contains various meteorological parameters, including observation time, wind 

direction (°), wind speed (knots), visibility (m), weather phenomena, cloud cover 

(oktas), lowest cloud base height (feet), air temperature (°C), dew point temperature 

(°C), sea-level pressure (mb), and trend forecast. 

The METAR data were systematically retrieved from the official website web-

aviation.bmkg.go.id and compiled in a Microsoft Excel workbook in .xlsx format. The 

dataset comprises 30-minute interval METAR reports from Soekarno-Hatta 

Meteorological Station (WIII) throughout 2024. The raw data were organized by 

parameter into separate columns, which include visibility (vis), wind direction (wind_d), 

wind speed (wind_s), temperature (temp), dew point (dew_point), sea-level pressure 

(press), cumulonimbus cloud presence (cb), rain (rain), thunderstorm (ts), haze (haze), 

mist (mist), cloud cover category (cloud), and cloud base height (height). 

Quality control was conducted to ensure format consistency and completeness, 

including cross-verification and removal of empty or NIL METAR entries. Weather 

conditions were further categorized to assess their potential influence on visibility 

values. These include Haze (HZ), Mist (BR), Rain (RA), and Thunderstorm (TS), with 

each condition represented in binary value. The value 1 denotes the presence of the 

condition and 0 indicates its absence. The presence of cumulonimbus clouds was 

encoded in the same binary manner, with 1 indicating observation and 0 indicating non-

observation. Cloud cover classifications were also numerically encoded; the code FEW 

corresponds to the value 1, SCT to 2, BKN to 3, and OVC to 4. In contrast, cloud codes 

such as NSC representing no significant cloud, NCD indicating no cloud detected, and 

SKC referring to sky clear were uniformly represented with the value 0. The dataset, 

once finalized and structured through this encoding process, was then utilized as the 

input for the Random Forest Regressor model.  

2.2 Random Forest Regressor Algorithm 

Random Forest Regressor, as a robust ensemble learning algorithm, has been proven 

effective in handling datasets with diverse features and complex non-linear relationships 

among variables [9]. Figure 1 illustrates the decision tree structure used for decision-

making processes, wherein data sharing similar classification characteristics are 

iteratively partitioned through a series of tree splits based on attribute-specific features. 

This recursive partitioning allows data to be categorized effectively. Although a single 

suboptimal decision tree may yield inconsistent and random predictions, the aggregation 

of multiple trees in a forest leads to more stable and accurate outcomes. As 

demonstrated by [10], random forests do not overfit as the number of trees increases, 
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and their generalization error converges to a limit, making them a reliable method for 

both classification and regression tasks. 

 

Figure 1. Random Forest Algorithm 

In the decision-making process, the Random Forest model performs multiple iterations, 

denoted by k, resulting in a sequence of classifications represented {h1(x), h2(x), .... hk(x)} 

which are then aggregated to classify the input data according to Equation (1).  

𝐻(𝑥) = arg 𝑚𝑎𝑥 ∑ 𝐼(ℎ𝑖(𝑥) = 𝑋𝑖)

𝑘

𝑖=1

                                                                                                                      (1) 

In this equation, H(x) denotes the final aggregated classification result produced by the 

ensemble model, hi represents an individual decision tree classifier within the forest, and 

𝑋𝑖 is the actual output class. The function I is an indicator function that returns 1 if the 

prediction ℎ𝑖(𝑥) is equal to the true class 𝑌, and 0 otherwise. 

This study developed a Random Forest Regressor model using Python 3.10 on the 

Google Colab platform. The hyperparameter settings presented in Table 1 were 

determined through an iterative process based on Grid Search process to identify the 

parameter combination yielding optimal performance. This method is widely adopted 

for model optimization due to its systematic exploration of the parameter space. The 

configuration employed 100 decision trees (n_estimators), a value shown to be 

sufficient for error stabilization without imposing excessive computational burden [10]. 

The splitting criterion (criterion) is set to 'squared_error', appropriate for regression 

tasks. The tree depth is limited to 40 (max_depth), with a minimum of 10 samples 

required for each split (min_samples_split=10), and no minimum constraint on the 

number of samples per leaf (min_samples_leaf=1). The number of features considered 

at each split is restricted to the square root of the total number of features 

(max_features='sqrt') to enhance ensemble diversity. Bootstrap sampling is enabled 

(bootstrap=True), and reproducibility is ensured through a fixed random state 

(random_state=42). Additional settings include warm_start=True for iterative efficiency, 

no complexity pruning (ccp_alpha=0.0), and no sampling restriction 

(max_samples=None). This configuration balances the bias-variance trade-off and 

computational efficiency, in accordance with empirical recommendations [11]. 
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Table 1. Hyperparameters setting 

Hyperparameters Value 

n_estimators 100 

criterion squared_error 

max_depth 40 

min_samples_split 10 

min_samples_leaf 1 

min_weight_fraction_leaf 0.0 

max_features sqrt 

max_leaf_nodes None 

min_impurity_decrease 0.0 

bootstrap True 

random state 42 

verbose 0 

warm_start True 

ccp_alpha 0.0 

max_samples None 

 

2.3 Model Evaluation  

The evaluation of model performance involves the calculation of several accuracy and 

error metrics. Performance assessment in machine learning requires a multidimensional 

approach by employing various metrics that offer a comprehensive perspective on the 

model's predictive capability. Mean Squared Error (MSE), as shown in Equation (2), 

quantifies the average squared deviation between predicted and actual values. It is 

sensitive to outliers and can reveal systematic biases in the model [12]. 

𝑀𝑆𝐸 =  
1

𝑚
∑(𝑋𝑖 − 𝑌𝑖)

2

𝑚

𝑖=1

                                                                                                                                        (2) 

Root Mean Squared Error (RMSE) is the square root transformation of MSE producing 

an error value in the same unit as the original data which facilitates practical 

interpretation of prediction accuracy, particularly for visibility expressed in meters [13]. 

𝑅𝑀𝑆𝐸 =  √
1

𝑚
∑(𝑋𝑖 − 𝑌𝑖)2

𝑚

𝑖=1

                                                                                                                                      (3) 

In addition, Mean Absolute Error (MAE), as presented in Equation (4), calculates the 

average of absolute differences between predicted and actual values. MAE offers an 

intuitive measure of error and is less affected by outliers, making it a relevant metric in 

visibility prediction, where accurate estimation across both low and high visibility 

values is equally critical [12]. 

𝑀𝐴𝐸 =  
1

𝑚
∑|𝑋𝑖 − 𝑌𝑖|

𝑚

𝑖=1

                                                                                                                                            (4) 

Meanwhile, the coefficient of determination (R²) shown in Equation (5), represents the 

proportion of variance in the observed data that can be explained by the model. An R² 

value close to 1 indicates a strong predictive capability in capturing actual data patterns 

[14]. In the context of airport visibility prediction, this combination of metrics validates 
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the operational reliability of the model in supporting flight safety, particularly in critical 

low-visibility scenarios [15]. 

𝑅2 = 1 − 
∑ (𝑋𝑖 − 𝑌𝑖)2𝑚

𝑖=1

∑ (𝑌̅ − 𝑌𝑖)2𝑚
𝑖=1

                                                                                                                                          (5) 

In these equations, 𝑋𝑖  denotes the predicted value generated by the model, while 𝑌𝑖  

represents the actual observed value. The term 𝑌̅ is the mean of all observed values, and 

𝑚 refers to the total number of samples in the dataset. These metrics are collectively 

employed to evaluate the model’s performance in predicting visibility based on 

meteorological observation data. 

3. Results and Discussion 

The distribution of visibility value at Soekarno-Hatta Airport is represented using the Q-

Q plot shown in Figure 2. The results show a tendency towards normal distribution in 

the middle quantile, as most of the visibility values are around the diagonal line. 

However, the upper quantile shows significant deviation, indicating that there is positive 

skewness in the data. The censoring process at the maximum visibility value in the 

METAR data of 10,000 metres is responsible for [16], [17] this condition. This kind of 

censoring in airport meteorological observations is caused by limitations of visibility 

observation instruments or reporting standards, which restrict the maximum recorded 

value, even though actual visibility may exceed that threshold [16], [17]. Data 

pengukuran yang dimaskud ditampilkan pada Tabel 1. 

 

Figure 1. Distribution of visibility in Soekarno Hatta Airport 

As shown in this Q-Q plot, distributional conditions that deviate from normality have a 

significant impact on the applicability and selection of predictive models. Random 

Forest Regressor is non-parametric and does not require a normal target distribution. 

However, the accumulation of values at the maximum limit can cause bias in model 

estimation, especially when using plateau or outlier data [18]. Therefore, to improve the 

reliability of the estimates, pre-processing approaches such as logarithmic 

transformation or the use of censored regression models should be considered [19]. 
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Figure 3. shows the results of the feature importance analysis of the Random Forest 

Regressor model used to predict visibility. The results show that haze is the variable that 

contributes the most to visibility estimation, with haze contributing the most to temp, 

mist, and wind speed. Previous studies have shown that particles such as mist and fine 

dust (haze) suspended in the atmosphere play an important role in reducing horizontal 

visibility, especially at airports in tropical environments with high humidity levels [20]. 

In addition, wind speed and temperature are also highly influential as they are directly 

related to the capacity of air to hold water vapour and the efficiency of particle 

dispersion in the atmosphere [21]. In ensemble learning-based predictive models, the 

systematic integration of METAR variables is supported by the strong correlation 

between visibility values and thermodynamic features. 

 

Figure 3. Feature importance of random forest regressor model 

The comparison of actual visibility values with predicted values is shown in the 

visualisation of Figure 4. This value illustrates the ability of the model to replicate the 

variability pattern of the visibility parameter based on the selected METAR data; most 

data points are close to the y = x line. However, the higher the visibility value (more 

than 8,000 m), the spread of observations shows a systematic bias so that the predictions 

tend to be below the actual value, and the vertical spread widens. This shows the 

limitation of the model in capturing extreme visibility [22]. This pattern corresponds to 

the distribution of censored targets, which is shown in the Q-Q plot (Figure 2). This is 

due to the fact that the maximum reporting limit of METAR is 10,000 m. 

As dominant features such as haze, mist, and temperature work better to explain low to 

moderate visibility conditions, the model faces difficulties in the high visibility range 

(Figure 3). The new study shows that, in addition to the Random Forest approach, using 

group methods or combining post-processing techniques with specific probabilistic 

models can help overcome the censoring effect [23]. For example, considering the upper 

limit of visibility, a mixture of distribution models (gamma and truncated normal) can 

reduce prediction bias and improve the reliability of estimates in extreme domains [24]. 

In addition, it has been shown that data fusion of atmospheric variables such as 

visibility trend and relative humidity can improve the prediction accuracy in low 

visibility situations [25]. 
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Figure 4. Comparison of actual and predicted data 

The dominant distribution of visibility targets at high values (more than 6,000 m) in 

both training and test data, with a peak distribution in the 10,000 m category is 

represented in Figure 5. This favourable skewness suggests that most visibility 

observations at Soekarno-Hatta Airport occur in sunny conditions. Figure 2 shows the 

tendency of the Random Forest model for overfitting in the high visibility domain, 

while Figure 4 shows the distribution mismatch between the low (<4,000 m) and high 

visibility classes. In addition, Figure 4 shows that there is difficulty in accurately 

describing the dynamics of low visibility, also known as low-high bias [26]. 

 

Figure 5. Target value distribution 

These distribution characteristics implicitly indicate that atmospheric regression 

modelling of censored variables faces many problems. According to recent studies, such 

as [27] and [28], the imbalance of the target distribution may decrease the sensitivity of 

the model to minority classes and may also obscure important features in tree selection-

based models. To address this, label transformation techniques such as monotonic 

binning and quantile regression have been shown to be effective in aligning the train-

test distribution and improving accuracy across the visibility range [29], [30]. 
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The performance evaluation results of the Random Forest Regressor model for visibility 

prediction at Soekarno-Hatta Airport are presented in Table 1. With a high coefficient of 

determination (R2 = 0.8736), the model can explain about 87% of the total variability of 

visibility data. This indicates that the model has an excellent level of fit in terms of 

operational meteorological predictions. This performance is in line with the results of 

[31], who stated that the Random Forest model shows significant capability in non-

linear multivariate regression, especially in terms of complex interactions between 

atmospheric parameters such as temperature, humidity, and haze concentration.  

Table 1. Random Forest Regressor Evaluation 

Model Evaluate Score 

MSE 596427.62 

RMSE 772.29 

MAE 607.45 

R2 0.8736 

In addition, the mean prediction deviation (RMSE) value of 772.29 and the mean 

accurate value (MAE) of 607.45 indicate that the mean prediction deviation is within 

the range of ±600-770 metres from the observed values. The smaller MAE value 

indicates that the model error is generally stable, although the RMSE value indicates the 

presence of extreme predictions (outliers) that are quite far from the actual values. 

According to [32], the difference between RMSE and MAE in environmental regression 

models is an important metric to evaluate the stability of predictions to extreme 

variability. Then, the mean square error (MSE) value of 596,427.62 indicates that the 

accumulated square error is still within a reasonable threshold according to [33], given a 

visibility scale of 10,000 metres. 

4. Conclusions 

The developed Random Forest Regressor model demonstrates high predictive capability 
in estimating airport visibility using integrated METAR parameters. With a coefficient 
of determination reaching 0.8736, the model reliably captures visibility patterns across 
various meteorological conditions, particularly under low-to-moderate visibility 
scenarios. However, limitations remain in predicting high visibility values due to target 
distribution censoring. Feature importance analysis confirms the dominant influence of 
haze, mist, temperature, and wind speed. These results emphasise the practical 
applicability of machine learning for aviation meteorology, offering a robust tool to 
enhance flight safety and operational efficiency in environments with dynamic 
atmospheric variability. 
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