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Abstract

The main purpose of this article is to study the behavior of the solutions
of discrete dynamical systems generated by set-valued mappings within
metric spaces. Specifically, it investigates the convergence of iterations
in the presence of computational errors for such mappings. The ap-
proach employed involves orbit class set operations. Furthermore, the
study establishes a necessary condition for the existence and uniqueness
of fixed points for set-valued mappings.
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1. Introduction

Discrete dynamical systems with a generating function of a single-valued function are
widely studied and commonly appear in the literature. In contrast, systems generated by set-
valued functions receive significantly less attention and are seldom explored [1]. This article
aims to delve into this less-charted area, particularly due to its relevance in addressing various
problems, including economic models based on set-valued mappings [2]. In pure exchange
economics, for example, the demand function is typically represented as a set-valued mapping.
This highlights the importance of studying set-valued dynamical systems, as understanding
these systems could contribute to identifying equilibrium points in economic systems.

The study of discrete dynamical systems revolves around understanding the behavior of
their orbits. This can be achieved through two approaches: first, by analyzing the behavior of
different initial values while keeping the parameter in a fixed amount, and second, by studying
how this behavior changes when the parameters are varied. The first method is known as initial
value analysis, while the second is referred to as the parameter space analysis [3].

The study of the convergence of iterations for contractive type mappings has been an
important topic in Nonlinear Functional Analysis since Banach’s seminal work [4] on the exis-
tence of a unique fixed point for a strict contraction [5]. Banach’s renowned theorem not only
guarantees the existence of a unique fixed point but also ensures the convergence of iterates
to this fixed point. However, when it comes to set-valued mappings, the analysis becomes
more complex and less understood, leading to intriguing and challenging results. In the case
of set-valued mappings, convergence of all trajectories in the dynamical system induced by
the mapping is not guaranteed. Instead, convergent trajectories must be specially constructed
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or designed to ensure their convergence, as the general behavior of the system can be more
complex and unpredictable [6].

This paper investigates the convergence of iterations generated by set-valued mappings.
Generally, the orbits resulting from the iterations of systems generated by set-valued mappings
are not unique. Therefore, this paper aims to analyze the system in a way that identifies the
orbit that converges to the fixed point.

2. Preliminary

Let X and Y be metric space and Po(Y) the family of all non-empty subsets of Y. The
mapping F : X −→ Po(Y) is called set-valued maps. The graph of a set-valued maps F from
X to Po(Y) is defined

Graph(F) = {(x, y) ∈ X × Y | y ∈ F(x)}
If F : X −→ Po(X ) is set-valued maps. A point x is called a fixed point of F if it is a solution
of the inclusion

x ∈ F(x)
Set-valued mappings are frequently encountered in fields such as control theory, economics,
and other disciplines. In economic exchange, for example, the demand function is a set-valued
mapping. Consumers (or individuals) can choose from a set of commodity bundles based on
their preferences. Consequently, the demand function is represented as a set-valued mapping,
as it captures the multiple options available to consumers, rather than just a single choice.[7]

For set-valued F : X −→ Po(Y), upper inverse of F is defined as the set

F+(B) = {x ∈ X | F(x) ∩B ̸= ∅, B ⊂ Y}

whereas a lower inverse of F is

F−(B) = {x ∈ X | F(x) ⊂ B, B ⊂ Y}

Definition 2.1. [8] A map F : X −→ Po(Y) is called upper semi-continuous (u.s.c) on X
if for every open subset G of Y, F+(G) is open in X . It is called lower semi-continuous on
X if for every open subset G of Y, F−(G) is an open set in X . F : X −→ Po(Y) is called
continuous on X if F upper and lower semi-continuous (l.s.c) on X .

We are thus led to introduce the class of functions f : X −→ [0,+∞] and to associate
them with their domain

Dom(f) = {x ∈ X | f(x) < +∞} (1)

Definition 2.2. A function f : X −→ [0,+∞] is strict if Dom(f) ̸= ∅

The continuity of the function f would be reviewed through the upper and lower semi-
continuous, as defined below.

Definition 2.3. A functions f : X −→ [0,+∞] is called l.s.c at x0 ∈ X if for all ϵ > 0, there
exists δ > 0 such that

f(x0)− ϵ ≤ f(x) (2)

for every x ∈ B(x0, δ).

A function f is u.p.s if (−f) is l.s.c and f is continuous if it is l.s.c and u.p.s

This theorem forms the basis for the fixed point existence in set-valued mappings, as
introduced by Caristi.

Theorem 2.4 (Ekeland [9]). Suppose that X is a complete metric space and that f : X −→
[0,+∞] is strict and l.s.c. Consider ε > 0 and x0 ∈ Dom(f). There exist x̄ ∈ X such that

(i) f(x0) ≥ f(x̄) + εd(x0, x̄)
(ii) f(x̄) < f(x) + ϵd(x, x̄), for all x ̸= x̄,
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Proof. To simplify, we may take ε = 1. We shall associate the function f with the set-valued
map F : X ←→ Po(X ) defined by

F(x) = {y ∈ X | f(x) ≥ f(y) + d(y, x)} (3)

for all x ∈ X . The sets F(x) is closed and F(x) has the following property

(a) y ∈ F(y)
(b) if y ∈ F(x) then F(y) ⊂ F(x).

We know that f(x) <∞. If y ∈ F(x) and z ∈ F(y), then we obtain the inequality

f(y) ≥ f(z) + d(y, z) (4)

and

f(x) ≥ f(y) + d(x, z). (5)

By using the triangle inequality, we obtain as follows

f(x) ≥ f(z) + d(x, z) (6)

which implies that z ∈ F (x). The part (i) is proven.
Next, part (ii) will be proven. We define the function g on Dom(f) as follows

g(y) = inf
z∈F(y)

f(z). (7)

For every y ∈ F(x), we have d(x, y) ≤ f(x) − g(x), which implies that diameter of F(x) is
bounded,

Diam(F(x)) ≤ 2(f(x)− g(x)) <∞. (8)

Next, we define the sequence xn+1 in F(xn) such that f(xn+1) ≤ g(xn)+2−n which beginning
with x0. Since F(xn+1) ⊂ F(xn), by property (b) of F , we have

g(xn) ≤ g(xn+1) (9)

Since we always have g(y) ≤ f(y), we obtained the inequalities

0 ≤ f(xn+1) ≤ g(xn) + 2−n ≤ g(xn+1) + 2−n (10)

or

0 ≤ f(xn+1)− g(xn+1) ≤ 2−n. (11)

Consequently, formula (8) implies that the diameter F(xn) converges to zero. As these closed
sets are nested and since the space is complete, it follows that⋂

n≥0

F(xn) = {x̄}. (12)

Since x̄ ∈ F(x0), the inequality (i) is satisfied. On the other hand, x̄ belongs to all the F(xn);
it follow that F(x̄) ⊂ F(xn) and consequently that

F(x̄) = {x̄}. (13)

It is clear tha if x ̸= x̄ then x /∈ F(x̄), this means f(x) + d(x̄, x) > f(x̄). The part (ii) is
satisfied. □

Theorem 2.4 above was applied by Caristi to determine a fixed point of a set-valued.

Theorem 2.5 (Caristi [10] ). Let F be a strict set-valued map of a complete metric space X
into Po(X ). We suppose that there exist function f : X −→ [0,+∞] is lower semi-continuous
such that

∀x ∈ X ,∃y ∈ F(x), f(y) + d(x, y) ≤ f(x). (14)

Then the set-valued map F has a fixed point.
If f is linked to F satisfy below

∀x ∈ X ,∀y ∈ F(x), f(y) + d(x, y) ≤ f(x), (15)

then F has a unique fixed point x̄ ∈ X and F(x̄) = {x̄}.
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Proof. Suppose that x̄ satisfies part (ii) in Theorem 2.4, that is for x ̸= x̄, we have f(x̄) <
f(x) + ϵd(x, x̄). With ϵ < 1 and ȳ ∈ F(x̄) satisfies

f(ȳ) + ϵd(x̄, ȳ) ≤ f(ȳ) + d(x̄, ȳ) ≤ f(x̄).

If ȳ ̸= x̄, inequality part (ii) in Theorem 2.4, with x = ȳ implies that f(ȳ) + d(x̄, ȳ) ≤ f(x̄) <
f(ȳ) + ϵd(ȳ, x̄) or d(x̄, ȳ) < ϵd(ȳ, x̄), which is impossible since ϵ < 1. Thus should be, ȳ = x̄.
This means there is at least one such if condition (14) is satisfied, while all the ȳ ∈ F (x) equal
to x̄ if condition (15) is satisfied. □

Discrete dynamical systems have widespread applications across various disciplines, par-
ticularly in the analysis and modeling of phenomena or processes occurring in discrete time
steps. Economic growth models and market prediction analyses, for example, rely heavily on
discrete dynamical systems. When generated by set-valued mappings, these systems model
economic scenarios where market growth depends on multiple uncertain variables, such as
government policies or consumer behavior.

3. Main Results

Let F : X −→ Po(X ) be set-valued maps. A discrete dynamical system is based on it if
the relation system is defined

xn+1 ∈ F(xn), (16)

where n = 0, 1, . . . and x0 = x is a fixed. Here, we assume that the realization of xn+1 can be
any element of F(xn). A sequence ⟨xn⟩ of element xn ∈ X satisfying (16) is called ”trajectory”
of F starting at x.

In economics, fixed points are crucial, as equilibrium in many mathematical economic
models is often described by a fixed point [11]. Arrow and Debreu were awarded the Nobel
Prize for proving the existence of fixed points in such models. Debreu’s model, in particular,
is a special case of (16) [12, 13].

Next, we collect trajectories or orbits with initial state values as follows. A set

H(x) =
⋃
{xn | for all trajectories starting at x}

is called ”orbit” starting at x.
Any trajectory ⟨xn⟩ of F is trajectory of H in the sense that xn+1 ∈ H(xn); a trajectory of H
may regarded as a sub-trajectory of F

Definition 3.1. If ⟨xn⟩ is trajectory of F , the set

L(xn) =
⋂
n≥0

 ⋃
n≥N

⟨xn⟩


is said to be the limit set of orbit.

By making use of the existence of a strict function associated with set-valued mappings,
we obtained a theorem.

Theorem 3.2. Suppose that F : X −→ ℘(X) is the set-valued maps, and the set X is a
complete metric space. Suppose there exist a function g : X −→ [0,+∞] satisfying

∀x ∈ X ,∃y ∈ F(x), g(y) + d(x, y) ≤ g(x). (17)

If the graph of F is closed, then for all x0 ∈ Dom(g), there exists a sequence ⟨xn⟩ ⊂ X satisfying
(16) which converges to a fixed point of F .

Proof. Suppose a point x0 ∈ Dom(f), by hypothesis there exists x1 ∈ F(x0) such that

d(x1, x0) ≤ g(x0)− g(x1).
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If the point xn ∈ X , then there exists xn+1 ∈ F(xn) such that

d(xn+1, xn) ≤ g(xn)− g(xn+1). (18)

This implies that the sequence of positive number ⟨g(xn)⟩ is decreasing; thus, it converges to
a number, β. Adding the inequalities (18) from n = p to n = q − 1, the triangle inequality
implies that

d(xp, xq) ≤ d(xp, xp+1) + d(xp+1, xp+2) + · · ·+ d(xq−2, xq−1) + d(xq−1, xq) (19)

≤ (g(xp)− g(xp+1)) + (g(xp+1)− g(xp+2)) + · · ·
· · · + (g(xq−2)− g(xq−1)) + (g(xq−1)− g(xq))

≤ g(xp)− g(xq).

Since the term on the right tends to (β − β) = 0 as p, q −→ ∞, we deduce that the sequence
xn is the Cauchy sequence. Since the metric space X is complete, of course, the sequence xn

converges to x̄ ∈ X .
Since the pairs (xn, xn+1) ∈ Graph(F) converges to (x̄, x̄) and the Graph(F) is closed,

the pairs (x̄, x̄) belongs to the graph of F . The point x̄ ∈ F(x̄). In other words, x̄ is a fixed
point of F . □

Theorem 3.2 is the result of modifications to Theorem 2.5 by adding sufficient conditions
for closed set-valued mappings. These properties are used to investigate the existence of the
system orbit generated by set-valued mappings.

The orbit resulting from the iteration of system (16) with the initial state x is a collection
of orbits xn, which may be finite or infinite in number. The following theorem shows that the
limit point and the image of the intersection of orbits are elements and subsets of the collection
of intersecting orbits.

Theorem 3.3. If any sequence ⟨xn⟩ of (16) we associate the set

K(xn) =
⋂
n≥0

H(xn), (20)

(i) Then the limit points of the sequence ⟨xn⟩ belong to K(xn).
(ii) If F l.s.c, then F(K(xn)) ⊂ K(xn).

Proof. (i) We know that the set of limit points of ⟨xn⟩ is the set

L(xn) =
⋂
n≥0

 ⋃
n≥N

{xn}

 .

Since
⋃

n≥N{xn} ⊂ H(xN ), it follow that

L(xn) =
⋂
n≥0

 ⋃
n≥N

{xn}

 ⊂ ⋂
n≥0

H(xn) ⊂
⋂
n≥0

H(xn) = K(xn).

It is proven that L(xn) ⊂ K(xn).

(ii) Since image F(H(x)) ⊂ H(x), it follow that when F is l.s.c, F(H(x)) ⊂ H(x). Now
we suppose that y = limn yn, where yn ∈ H(x) and z ∈ F(y). Since F is l.s.c, there
exists zn ∈ F(yn) ⊂ H(x) such that zn converges to z. Consequently, z ∈ H(x). It
then follows that F(L(xn)) = F(K(xn)) ⊂ K(xn).
It is proven that F(K(xn)) ⊂ K(xn).

□

We suppose that there exists a function h : X −→ [0,+∞] satisfying

∀x ∈ X , ∀y ∈ F(x), h(y) + d(x, y) ≤ h(x). (21)
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Theorem 3.4. For each x ∈ Dom(h), construct a sequence ⟨xn⟩ trajectory of (16) with starting
at x0 = x satisfying

xn+1 ∈ H(xn) and h(xn+1) ≤ v(xn) + 2−n (22)

where

v(x) = inf{h(y) | y ∈ H(x)} (23)

Then the sequence ⟨xn⟩ converges to a limit x̄.

Proof. For x ∈ Dom(h) and assumption (21) implies that

∀y ∈ H(x), d(x, y) ≤ h(x)− h(y).

Actually, y = xn, where xn ∈ F(xn−1), · · · , x1 ∈ F(x). Thus,

d(x, y) ≤ d(x, x1) + d(x1, x2) + d(x2, x3) + · · ·+ d(xn−1, y) =

n∑
m=1

d(xm−1, xm)

≤
n∑

m=1

(h(xm−1)− h(xm))

= h(x0)− h(xn)

= h(x)− h(y)

From (23) of the function h, it follows that

∀y ∈ H(x), inf
y∈H(x)

d(x, y) ≤ h(x)− inf
y∈H(x)

h(y) = h(x)− v(x),

hence that

Diam(H(x)) ≤ 2(h(x)− v(x)).

We now choose the sequence ⟨xn⟩ satisfying (22) and show that

v(xn+1) ≤ h(xn+1) ≤ v(xn) + 2−n ≤ v(xn+1) + 2−n

or

0 ≤ h(xn+1)− v(xn+1) ≤ 2−n.

Thus, the decreasing sequence of sets H(xn), the diameter of which tends to zero, reduces to
single point x̄ ∈ H(xn), whence H(x̄) ⊂ H(xn), it follows that

H(x̄) ⊂ ∩n≥0H(xn) = {x̄} ⊂ H(x̄)

or

H(x̄) = {x̄}
□

Theorem 3.4 shows that the iteration with the generating function of the collection of
orbits, satisfying certain conditions (22) and (23), the orbits of the discrete dynamical system
will converge to a unique fixed point for set-valued mappings.

4. Conclusion

In this section, we present the conclusion of the above results. By the intersection of the
collected trajectory (orbit) solutions of the dynamical system and utilizing the Caristi mapping
for set-valued mappings, it is obtained that a sequence of trajectories (orbits) converges to a
fixed point (Theorem 3.2). The result of Theorem 3.3 leads to Theorem 3.4, which shows that
the orbits of the system converge to a unique fixed point.
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