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Abstract

This paper discovers a new identity of finite series generated by poly-
nomial of real coefficients and certain generalized Fibonacci sequence.
Let this generalized Fibonacci sequence be denoted by (sn)n≥0 and be
defined with initial values s0 = c0, s1 = c1 and the recurrence relation
sn+1 = asn + bsn−1 for all positive integers n, where a, b are positive
integers, and c0, c1 are integers with (c0, c1) ̸= (0, 0). Then, we find an
interesting identity of the series

∑n
k=1 P (k)sk−1 where P (x) is a poly-

nomial of real coefficients. This series can be represented by identity∑n
k=1 P (k)sk−1 = F1(x)sn+1 + G1(n)sn + H1(n) for all positive inte-

gers n, where F1(x), G1(x), and H1(x) are certain polynomials with real
coefficients. Besides discovering this identity, there are some fabulous
properties behind this identity which can be observed. We observe that
the existence of triple (F1(x), G1(x), H1(x)) satisfying this identity is
a guarantee, but their uniqueness is not a guarantee. Therefore, some
possible cases which derives the uniqueness and the non-uniqueness of
triple (F1(x), G1(x), H1(x)) are also studied.

Keywords: Fibonacci sums, generalized Fibonacci sequences, polyno-
mials of real coefficients, finite series

1. Introduction

Generalized Fibonacci sequence is an interesting topic in recursive sequences, especially
second-order linear recurrence sequences. It modifies the recurrence relation and two initial
values of old Fibonacci sequence. We know that each term in old Fibonacci sequence is obtained
by summing up two previous terms, so each term in generalized Fibonacci sequence is a linear
combination of two previous terms. Also, instead of initial values 0 and 1, generalized Fibonacci
sequence allows its two initial values with any of two numbers. For the literatures that discuss
the generalized Fibonacci sequence, see [2], [3], [4], [5], [10], [12].

In this paper, we consider the generalized Fibonacci sequence (sn)n≥0 defined by the
recursion sn+1 = asn + bsn−1,∀n ∈ N and two initial values s0 = c0, s1 = c1 where a, b ∈
N; c0, c1 ∈ Z, (c0, c1) ̸= (0, 0). Many well-known recursive sequences are special cases of (sn)n≥0,
such as Fibonacci sequence [6], Lucas sequence [6], Pell sequence [7], and Jacobsthal sequence
[11]. If (a, b, c0, c1) = (1, 1, 0, 1), then (sn)n≥0 becomes the Fibonacci sequence (Fn)n≥0. If
(a, b, c0, c1) = (1, 1, 2, 1), then (sn)n≥0 becomes the Lucas sequence (Ln)n≥0. If (a, b, c0, c1) =
(2, 1, 0, 1), then (sn)n≥0 becomes the Pell sequence (Pn)n≥0. If (a, b, c0, c1) = (1, 2, 0, 1), then
(sn)n≥0 becomes the Jacobsthal sequence (Jn)n≥0.
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Definition 1.1. Let (sn)n≥0 be a generalized Fibonacci sequence defined by:

s0 = c0, s1 = c1, and (∀n ∈ N) sn+1 = asn + bsn−1

with a, b ∈ N; c0, c1 ∈ Z; (c0, c1) ̸= (0, 0).

The purpose of this paper is to state a new identity of the sum
∑n

k=1 P (k)sk−1 where
P (x) is a real coefficient polynomial. Also, we study some interesting properties related to
this identity. We first hypothesize that for a certain polynomial P (x) in R[x], there always
exist three polynomials F1(x), G1(x), H1(x) ∈ R[x] (depending on P (x)) satisfying the identity∑n

k=1 P (k)sk−1 = F1(n)sn+1 +G1(n)sn +H1(n) for all n ∈ N.
As examples, when we replace (sn)n≥0 by Fibonacci sequence (Fn)n≥0, the possible triples

(F1(x), G1(x), H1(x)) ∈ R[x]3 satisfying the identity
∑n

k=1 P (k)sk−1 = F1(n)sn+1+G1(n)sn+
H1(n), ∀n ∈ N for P (x) = x, P (x) = x2 + 2x, P (x) = 2x2 + 1 are respectively (x− 1,−1, 1),
(x2+3,−2x+1,−3), (2x2−4x+11,−4x+6,−11). In other word, these represent the following
identities in Example 1.2, holds for all n ∈ N. One can show these three identities by using
induction on n.

Example 1.2. Identities for series
∑n

k=1 kFk−1,
∑n

k=1(k
2 + 2k)Fk−1,

∑n
k=1(2k

2 + 1)Fk−1 :

n∑
k=1

kFk−1 = (n− 1)Fn+1 − Fn + 1,

n∑
k=1

(k2 + 2k)Fk−1 = (n2 + 3)Fn+1 + (−2n+ 1)Fn − 3,

n∑
k=1

(2k2 + 1)Fk−1 = (2n2 − 4n+ 11)Fn+1 + (−4n+ 6)Fn − 11.

Some articles has mainly inspired us to find a new identity for the series
∑d

k=1 P (k)sk−1,
for example [8] and [1]. Respectively, they find the identities generated by series

∑n
k=1 k

mFk

and
∑n

k=1 k
mFk+r, where (Fn)n≥0 are Fibonacci sequence. Ledin [8] proposes an identity for

series
∑n

k=1 k
mFk with m ∈ N0. He presents that

∑n
k=1 k

mFk = P2(m,n)Fn+1+P1(m,n)Fn+
C(m) where P1(m,n) and P2(m,n) are polynomials in n of degree m, and C(m) is a real
constant depending on m. Besides that, in [1], Brousseau discovers the general formula of
series

∑n
k=1 k

mFk+r with m, r ∈ N by using a finite difference approach.

We are also motivated by problem 1410 Spring 2024 of Pi Mu Epsilon journal [9] which is
proposed by Kenny B. Davenport. The problem considers Pell sequence (Pn)n≥0 where P0 = 0,
P1 = 1, Pk+2 = 2Pk+1 + Pk, ∀k ≥ 0. There are two identities that must be proved:

2

n∑
k=1

kPk−1 = nPn+1 − (n+ 1)Pn; 2

n∑
k=1

k2Pk−1 = (n2 + 1)Pn+1 − (n2 + 2n)Pn − 1. (1)

These identities can be proved easily by induction on n, but the more challenging question
in this problem is ”can we conjecture what shape of the identity obtained by the series∑n

k=1 k
dPk−1 ?”. Luckily, we find an interesting identity of the series

∑n
k=1 k

dPk−1 for general
d ∈ N0 and it generalizes two identities in (1). This identity is in the following theorem.

Theorem 1.3. Let d ∈ N0, (Pn)n≥0 be Pell sequence, and Ad = (ai,j)
d+1
i,j=1 be a (d+1)×(d+1)

square matrix defined by:

ai,j =


0 if i > j

2 if i = j

(2j−i + 2)
(
j−1
i−1

)
if i < j.

The matrix Ad is invertible because its determinant is 2d+1 which is non-zero. Therefore there
exists an ordered (d + 1)-tuple (λ0(d), λ1(d), . . . , λd(d)) ∈ Rd+1 which is a unique solution of
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matrix equation

Ad(λ0(d), λ1(d), . . . , λd(d))
T =

((
d

0

)
2d,

(
d

1

)
2d−1, . . . ,

(
d

d

)
20
)T

.

Then the polynomials F (x), G(x), H(x) defined by:

F (x) =

d∑
i=0

λi(d)x
i, G(x) = −(x+ 1)d +

d∑
i=0

(x+ 1)iλi(d), H(x) = 2d −
d∑

i=0

(2i + 2)λi(d)

satisfy the identity

(∀n ∈ N)
n∑

k=1

kdPk−1 = F (n)Pn+1 +G(n)Pn +H(n). (2)

Example 1.4. Some identities of
∑n

k=1 k
dPk−1 for lower degrees d are:

d = 0 =⇒
n∑

k=1

Pk−1 =
1

2
Pn+1 −

1

2
Pn − 1

2
,

d = 1 =⇒
n∑

k=1

kPk−1 =
1

2
nPn+1 −

1

2
(n+ 1)Pn,

d = 2 =⇒
n∑

k=1

k2Pk−1 =
1

2
(n2 + 1)Pn+1 −

1

2
(n2 + 2n)Pn − 1

2
,

d = 3 =⇒
n∑

k=1

k3Pk−1 =
1

2
(n3 + 3n− 3)Pn+1 −

1

2
(n3 + 3n2 + 1)Pn +

3

2
,

d = 4 =⇒
n∑

k=1

k4Pk−1 =
1

2
(n4 + 6n2 − 12n+ 13)Pn+1 −

1

2
(n4 + 4n3 + 4n− 6)Pn − 13

2
.

Identity (2) can be proved by using induction. It can be generalized to be Theorem 2.5
preceded by Lemma 2.4. As our attempt to generalize (Pn)n≥0 to (sn)n≥0, we can generalize
the identity (2) to be identity (5). Identity (5) states that for non-negative integer d, the
following identity holds:

∑n
k=1 k

dsk−1 = F0,d(n)sn+1 +G0,d(n)sn +H0,d(n) for all positive
integers n, where F0,d(x), G0,d(x), and H0,d(x) are certain polynomials with real coefficients.
Later, an example of such polynomials F0,d(x), G0,d(x), H0,d(x) is stated in Theorem 2.5. One
example of triple (F0,d(x), G1,d(x), H1,d(x)) ∈ R[x]3 which satisfies the identity

∑n
k=1 k

dsk−1 =
F0,d(n)sn+1+G0,d(n)sn+H0,d(n), ∀n ∈ N is (F1,d(x), G1,d(x), H1,d(x)) where F1,d(x), G1,d(x),
and H1,d(x) are polynomials of real coefficients defined in Theorem 2.5. It has shown the
existence of triple (F0,d(x), G0,d(x), H0,d(x)) ∈ R[x]3 which satisfies the identity

∑n
k=1 k

dsk−1 =
F0,d(n)sn+1 + G0,d(n)sn +H0,d(n) for all n ∈ N. Later, we can extend

∑n
k=1 k

dsk−1 into the
more general series

∑n
k=1 P (k)sk−1 where P (x) is arbitrary polynomial in R[x]. In other word,

for every polynomials P (x) ∈ R[x], there exist polynomials with real coefficients F1(x), G1(x),
H1(x) satisfying the identity

∑n
k=1 P (k)sk−1 = F1(n)sn+1 +G1(n)sn +H1(n) for all positive

integers n.

The triple (F1(x), G1(x), H1(x)) ∈ R[x]3 which satisfies the identity
∑n

k=1 P (k)sk−1 =
F1(n)sn+1 + G1(n)sn + H1(n), ∀n ∈ N is ensured to be exist, but not always unique. The
non-uniqueness of (F1(x), G1(x), H1(x)) can happen, for example, when we set (a, b, c0, c1) =
(1, 12, 1, 4) to (sn)n≥0, i.e., (sn)n≥0 with recurrence relation sn+1 = sn + 12sn−1,∀n ∈ N and
initial values s0 = 1, s1 = 4. Then we also set P (x) = 72x+18, so the following three identities
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hold for all positive integers n and one can show these by induction.

n∑
k=1

(72k + 18)sk−1 = sn+1 + (24n− 6)sn + 2,

n∑
k=1

(72k + 18)sk−1 = (6n+ 1)sn+1 − 6sn + 2,

n∑
k=1

(72k + 18)sk−1 = 3n2sn+1 − (12n2 − 24n+ 2)sn + 2.

From these facts, if (sn)n≥0 has the constraint (a, b, c0, c1) = (1, 12, 1, 4), then the possible
triples (F1(x), G1(x), H1(x)) ∈ R[x]3 which satisfy the identity

∑n
k=1 P (k)sk−1 = F1(n)sn+1+

G1(n)sn+H1(n), ∀n ∈ N are (1, 24x−6, 2), (6x+1, −6, 2), and (3x2, −12x2+24x−2, 2). These
things have shown us that for a polynomial P (x) ∈ R[x], the triple (F1(x), G1(x), H1(x)) ∈
R[x]3 satisfying the identity

∑n
k=1 P (k)sk−1 = F1(n)sn+1 + G1(n)sn + H1(n), ∀n ∈ N can

not be guaranteed to be unique. Therefore, we also investigate what types of sequence (sn)n≥0

that implies the uniqueness and the non-uniqueness of triple (F1(x), G1(x), H1(x)) ∈ R[x]3
satisfying the identity

∑n
k=1 P (k)sk−1 = F1(n)sn+1 +G1(n)sn +H1(n) for all n ∈ N.

We intend to consider two types of (sn)n≥0 which imply the uniqueness and the non-
uniqueness of this triple respectively. These two types of sequence (sn)n≥0 are: (i) (sn)n≥0

with both of 2c1− (a+
√
a2 + 4b)c0 and 2c1− (a−

√
a2 + 4b)c0 are non-zero, and (ii) (sn)n≥0

with one of 2c1 − (a +
√
a2 + 4b)c0 or 2c1 − (a −

√
a2 + 4b)c0 equals zero. When both of

2c1 − (a+
√
a2 + 4b)c0 and 2c1 − (a−

√
a2 + 4b)c0 are non-zero, by the help of Theorem 2.9,

we ensure that the such triple (F1(x), G1(x), H1(x)) is unique with dependent of P (x). If we
set P (x) = amxm + am−1x

m−1 + · · · + a1x + a0 (where m ∈ N0 and a0, a1, . . . , am ∈ R), we
obtain F1(x) =

∑m
d=0 adF1,d(x), G1(x) =

∑m
d=0 adG1,d(x), H1(x) =

∑m
d=0 adH1,d(x) where

F1,d(x), G1,d(x), H1,d(x) are polynomials which stated in Theorem 2.5. On the other hand,

when one of 2c1 − (a +
√
a2 + 4b)c0 or 2c1 − (a −

√
a2 + 4b)c0 equals zero, so for a single

polynomial P (x) ∈ R[x], there are infinitely many triples (F1(x), G1(x), H1(x)) in R[x]3 such
that the identity

∑n
k=1 P (k)sk−1 = F1(n)sn+1 +G1(n)sn +H1(n), ∀n ∈ N holds.

2. Some Important Facts

For the convenient of writings, let us denote j1 and j2 as follows.

Definition 2.1. j1 = a+
√
a2 + 4b and j2 = a−

√
a2 + 4b.

We consider again the sequence (sn)n≥0, as defined in Definition (1.1), with the recurrence
relation sn+1 = asn + bsn−1, ∀n ∈ N and initial values s0 = c0, s1 = c1 where (a, b) ∈ N2 and
(c0, c1) ∈ Z2\{(0, 0)}. Then the sequence (sn)n≥0 is explicitly given by the Binet-type formula

sn =
1

2
√
a2 + 4b

(
(2c1 − j2c0)

(
j1
2

)n

− (2c1 − j1c0)

(
j2
2

)n)
, ∀n ∈ N0 (3)

where j1/2 =
(
a+

√
a2 + 4b

)
/2 and j2/2 =

(
a−

√
a2 + 4b

)
/2 are roots of quadratic

equation x2 − ax − b = 0. Both of a and b are positive integers, so the discriminant of
x2 − ax − b = 0 is a2 + 4b. It is clear that a2 + 4b > a2 > 0. Therefore, all roots of
x2 − ax− b = 0 are real, distinct, and non-zero.

Another property about (sn)n≥0 is that there exists N ∈ N so that sn ̸= 0 for all n ≥ N .
This property is useful to verify that sn+1/sn will converge to a number as n goes to ∞. If
there does not exist m ∈ N so that sm = 0, then there exists N = 1 so that sn ̸= 0 for all
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n ≥ N = 1. If there exists m ∈ N so that sm = 0, by formula (3), we have

(2c1 − j2c0)

(
j1
2

)m

= (2c1 − j1c0)

(
j2
2

)m

⇐⇒ (2c1 − j2c0)j
m
1 = (2c1 − j1c0)j

m
2

⇐⇒ (jm1 − jm2 )c1 =
1

2
(jm−1

1 − jm−1
2 )j1j2c0

⇐⇒ (jm1 − jm2 )c1 = −2(jm−1
1 − jm−1

2 )bc0.

If c0 = 0 then (jm1 − jm2 )c1 = 0. Since j1 ̸= j2, then c1 = 0. It implies (c0, c1) = (0, 0), a
contradiction. Therefore c0 must be non-zero and we get

−c1
2bc0

=
jm−1
1 − jm−1

2

jm1 − jm2
. (4)

Let ξ : N → R be a function defined by ξ(n) =
jn−1
1 −jn−1

2

jn1 −jn2
, ∀n ∈ N. We can observe that ξ

is strictly increasing and thus the equation (4) must have exactly one solution in m. Then it
implies sn ̸= 0 for all n ≥ m+ 1 (in this case, we can take N = m+ 1).

Lemma 2.2. There exists N ∈ N so that sn ̸= 0 for all n ≥ N .

Lemma 2.3. 2c1 − j1c0 and 2c1 − j2c0 can not be simultaneously equal to zero.

Proof. Assume the contrary that 2c1 − j1c0 = 2c1 − j2c0 = 0. By equation (3), sn = 0 for all
n ∈ N0, contradicting the Lemma 2.2. Hence, (2c1 − j1c0, 2c1 − j2c0) ̸= (0, 0). □

If 2c1 − j1c0 = 0, then 2c1 − j2c0 ̸= 0 and sn = 2c1−j2c0
2
√
a2+4b

(
j1
2

)n
for all n ∈ N0.

If 2c1 − j2c0 = 0, then 2c1 − j1c0 ̸= 0 and sn = −2c1+j1c0
2
√
a2+4b

(
j2
2

)n
for all n ∈ N0.

If 2c1 − j1c0 and 2c1 − j2c0 are non-zero: Let us consider the subsequence (sn)n≥N with
sn ̸= 0, ∀n ≥ N for some N ∈ N. By setting n going to ∞ for sn+1/sn, we get

lim
n→∞

sn+1

sn
= lim

n→∞

1

2
· (2c1 − j2c0)j

n+1
1 − (2c1 − j1c0)j

n+1
2

(2c1 − j2c0)jn1 − (2c1 − j1c0)jn2

= lim
n→∞

1

2
·
(2c1 − j2c0)j1 − (2c1 − j1c0)j2

(
j2
j1

)n
(2c1 − j2c0)− (2c1 − j1c0)

(
j2
j1

)n
= lim

n→∞

1

2
· (2c1 − j2c0)j1

2c1 − j2c0

(
because

∣∣∣j2
j1

∣∣∣ < 1

)
=

j1
2
.

Hence the sequence ( sn+1

sn
)n≥N converges to j1/2 =

(
a+

√
a2 + 4b

)
/2 for this case.

Lemma 2.4. Let d be a non-negative integer. Then there exist the polynomials F0,d(x),
G0,d(x), H0,d(x) with real coefficients satisfying

(∀n ∈ N)
n∑

k=1

kdsk−1 = F0,d(n)sn+1 +G0,d(n)sn +H0,d(n) (5)

An example of ordered triple of polynomials (F0,d(x), G0,d(x), H0,d(x)) that satisfies the
identity (5) is stated in Theorem 2.5 as follows.
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Theorem 2.5. Suppose that d ∈ N0. Let Bd = (bi,j)
d+1
i,j=1 be a (d + 1) × (d + 1) real square

matrix with

bi,j =


0 if i > j

a+ b− 1 if i = j

(2j−ib+ a)
(
j−1
i−1

)
if i < j.

Then, we get the following statements.
(i). There exists uniquely an ordered (d+1)-tuple (b0(d), b1(d), . . . , bd(d)) ∈ Rd+1 satisfying the
matrix equation

Bd (b0(d), b1(d), . . . , bd(d))
T
=

((
d

0

)
2d,

(
d

1

)
2d−1, . . . ,

(
d

d

)
20
)T

(6)

(ii). Let (b0(d), b1(d), . . . , bd(d)) be the unique solution of (6).
Then the triple of polynomials (F1,d(x), G1,d(x), H1,d(x)) defined by

F1,d(x) =

d∑
i=0

bi(d)x
i, G1,d(x) = −(x+ 1)d +

(
d∑

i=0

(x+ 1)ibi(d)

)
b,

and H1,d(x) = c0 + 2dc1 − (ac1 + bc0)

d∑
i=0

bi(d)− bc1

d∑
i=0

2ibi(d)

is an example of triple (F0,d(x), G0,d(x), H0,d(x)) which satisfy the identity (5).

Proof. (i). The determinant of Bd is (a + b − 1)d+1 ̸= 0, then the matrix Bd is invertible
and it implies that the equation (6) has exactly one solution (b0(d), b1(d), . . . , bd(d)) in Cd+1.
Furthermore,

(b0(d), b1(d), . . . , bd(d))
T
= B−1

d

((
d

0

)
2d,

(
d

1

)
2d−1, . . . ,

(
d

d

)
20
)T

.

Since B−1
d ∈ Md+1(R) and

((
d
0

)
2d,
(
d
1

)
2d−1, . . . ,

(
d
d

)
20
)T

∈ M(d+1)×1(R), then
(b0(d), b1(d), . . . , bd(d)) ∈ Rd+1 and the result follows.

(ii). We show this part by using induction. When n = 1, the LHS of (5) is
∑1

k=1 k
dsk−1 =

s0 = c0 and the RHS of (5) is F1,d(1)s2 +G1,d(1)s1 +H1,d(1) =
(∑d

i=0 bi(d)
)
(ac1 + bc0) +(

−2d +
(∑d

i=0 2
ibi(d)

)
b
)
c1 + c0 + 2dc1 − (ac1 + bc0)

∑d
i=0 bi(d)− bc1

∑d
i=0 2

ibi(d) = c0.

In this case, the LHS and RHS of (5) are being same, so (5) satisfies for n = 1.

Assume that the identity (5) satisfies for n = m for some m ∈ N, so
m∑

k=1

kdsk−1 = F1,d(m)sm+1 +G1,d(m)sm +H1,d(m) (7)

We have to show that the identity (5) also holds for n = m+ 1. Before we show it, we would
like to show that for all x ∈ R,

F1,d(x+ 1) : (F1,d(x)−G1,d(x+ 1)) :
(
(x+ 1)d +G1,d(x)

)
= 1 : a : b (8)

,i.e., F1,d(x)−G1,d(x+ 1) = aF1,d(x+ 1) and (x+ 1)d +G1,d(x) = bF1,d(x+ 1).
By definitions of F1,d(x) and G1,d(x) in Theorem 2.5 part (ii), we have

(x+ 1)d +G1,d(x) =

(
d∑

i=0

(x+ 1)ibi(d)

)
b = bF1,d(x+ 1) (9)

Observe that the matrix equation (6) is equivalent to

(∀k = 0, 1, 2, . . . , d)

d∑
i=k

(b · 2i−k + a)

(
i

k

)
bi(d) =

(
d

k

)
2d−k + bk(d) (10)
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We also observe that the degrees of F1,d(x)−G1,d(x+1) and aF1,d(x+1) are not more than
d. For all k = 0, 1, 2, . . . , d; the coefficients of xk in polynomials F1,d(x) − G1,d(x + 1) and
aF1,d(x+ 1) are respectively

bk(d) +

(
d

k

)
2d−k −

(
d∑

i=k

2i−k

(
i

k

)
bi(d)

)
b and

(
d∑

i=k

(
i

k

)
bi(d)

)
a (11)

Because of identity (10), two expressions in (11) are equivalent. It implies that

F1,d(x)−G1,d(x+ 1) = aF1,d(x+ 1) (12)

By (9) and (12), we have shown the condition (8) as desired.

We remember the recurrence relation of (sn)n≥0: sn+1 = asn+ bsn−1 for all n ∈ N. The
coefficients of sn+1, sn, and sn−1 in this recurrence relation have the ratio 1 : a : b which is
same as the ratio in (8). Hence, the following identity holds for all x ∈ R and all n ∈ N.

F1,d(x+ 1)sn+1 = (F1,d(x)−G1,d(x+ 1)) sn +
(
(x+ 1)d +G1,d(x)

)
sn−1 (13)

Setting x := m, n := m+ 1 to (13) yields

F1,d(m+ 1)sm+2 = (F1,d(m)−G1,d(m+ 1)) sm+1 +
(
(m+ 1)d +G1,d(m)

)
sm

and equivalently,

(m+ 1)dsm = F1,d(m+ 1)sm+2 + (G1,d(m+ 1)− F1,d(m)) sm+1 −G1,d(m)sm (14)

Summing up the equations (7) and (14) yields

m+1∑
k=1

kdsk−1 = F1,d(m+ 1)sm+2 +G1,d(m+ 1)sm+1 +H1,d(m+ 1)

and hence the identity (5) holds for n = m+ 1.

In conclusion, the identity (5) holds for all n ∈ N. □

Example 2.6. Some identities of
∑n

k=1 k
dsk−1 for lower degrees d are:

n∑
k=1

sk−1 =
sn+1

a+ b− 1
+

(1− a)sn
a+ b− 1

+ c0 + c1 −
ac1 + bc0 + bc1

a+ b− 1
,

n∑
k=1

ksk−1 =

(
x

a+ b− 1
+

a− 2

(a+ b− 1)2

)
sn+1 +

(
(1− a)x

a+ b− 1
+

−a2 + 2a− b− 1

(a+ b− 1)2

)
sn

+ c0 + 2c1 −
(ac1 + bc0)(2a+ b− 3) + bc1(3a+ 2b− 4)

(a+ b− 1)2
,

n∑
k=1

k2sk−1 =

(
x2

a+ b− 1
+

(2a− 4)x

(a+ b− 1)2
+

a2 − 3a+ 4b− ab+ 4

(a+ b− 1)3

)
sn+1

+

(
(1− a)x2

a+ b− 1
+

(−2a2 + 4a− 2b− 2)x

(a+ b− 1)2
+

4a2b+ b3 + 3ab2 − 11ab− 2b2 + 9b

(a+ b− 1)3
− 1

)
sn

− (ac1 + bc0)(4a
2 + b2 + 3ab− 11a− 2b+ 9) + bc1(9a

2 + 4b2 + 11ab− 23a− 12b+ 16)

(a+ b− 1)3

+ c0 + 4c1.

We note that, because of Theorem 2.5, it should imply that for a polynomial P (x) ∈
R[x], there exist three polynomials F1(x), G1(x), H1(x) ∈ R[x] so that

∑n
k=1 P (k)sk−1 =

F1(n)sn+1+G1(n)sn+H1(n) for all positive integers n. Then, the new problem for us is ”for a
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polynomial P (x) ∈ R[x], can we ensure that the triple of polynomials (F1(x), G1(x), H1(x)) ∈
R[x]3 which satisfies the identity

∑n
k=1 P (k)sk−1 = F1(n)sn+1 + G1(n)sn + H1(n),∀n ∈ N

is unique ?”. Therefore, for the next steps, we will investigate what cases that imply the
uniqueness of such triple (F1(x), G1(x), H1(x)). Although some cases do not imply the unique-
ness of (F1(x), G1(x), H1(x)), but indeed in those cases, there are infinitely many triples
(F1(x), G1(x), H1(x)) ∈ R[x]3 which satisfy the identity

∑n
k=1 P (k)sk−1 = F1(n)sn+1+G1(n)sn+

H1(n),∀n ∈ N.

Lemma 2.7. If P (x) is a polynomial with real coefficients and lim
n→∞,
n∈N

P (n) = 0, then P (x) is

zero polynomial.

Proof. If P (x) is not constant, then P (x) = amxm + am−1x
m−1 + · · · + a1x + a0 for some

m ∈ N0 and for some a0, a1, . . . , am ∈ R with am ̸= 0. Observe that for all x ∈ R+, we have

P (x) = amxm ·

(
1 +

m∑
k=1

am−k

xkam

)
.

The condition lim
n→∞, n∈N

P (n) = 0 implies that

0 = lim
n→∞,
n∈N

|P (n)| = lim
n→∞,
n∈N

|amnm| · lim
n→∞,
n∈N

∣∣∣∣∣1 +
m∑

k=1

am−k

nkam

∣∣∣∣∣ = lim
n→∞,
n∈N

|amnm|.

It is impossible because am ̸= 0 should imply lim
n→∞,
n∈N

|amnm| = ∞.

If P (x) is a constant polynomial, let P (x) = c, ∀x ∈ R. Then 0 = lim
n→∞,
n∈N

P (n) = lim
n→∞,
n∈N

c = c,

so P (x) is zero polynomial.
In conclusion, P (x) must be zero polynomial. □

Lemma 2.8. Let k be a real number with k ∈ R \ [−1, 1]. For all polynomials P (x) and Q(x)
with real coefficients where Q(x) is not zero polynomial, we have the limit

lim
n→∞
n∈N

P (n)/Q(n)

kn
= 0.

Proof. Consider an arbitrary m ∈ N0. For all positive integers n > (m+2)!
(ln |k|)m+2 , we have

0 <
nm+1

|k|n
=

nm+1∑∞
a=0

(n ln |k|)a
a!

<
nm+1

(n ln |k|)m+2

(m+2)!

=
(m+ 2)!

n(ln |k|)m+2
< 1 =⇒ 0 <

nm

|k|n
<

1

n
.

Since lim
n→∞
n∈N

0 = lim
n→∞
n∈N

1
n = 0, by Squeeze theorem we obtain lim

n→∞
n∈N

nm

|k|n = 0, then lim
n→∞
n∈N

nm

kn = 0.

Here we get the fact that for all m ∈ N0, the following limit holds:

lim
n→∞
n∈N

nm

kn
= 0.

Let us consider arbitrarily the polynomials P (x) ∈ R[x] and Q(x) ∈ R[x] \ {0}, so there exists
M ∈ N such that Q(x) ̸= 0 for all real x ≥ M . If P (x) is the zero polynomial, then

lim
n→∞
n∈N

P (n)/Q(n)

kn
= lim

n→∞
n∈N

0 = 0.

If P (x) is not zero polynomial, then

lim
n→∞
n∈N

P (n)/Q(n)

n| deg(P )−deg(Q)|+1
= 0 and lim

n→∞
n∈N

n| deg(P )−deg(Q)|+1

kn
= 0
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where deg(...) denotes the degree of a polynomial. Hence,

lim
n→∞
n∈N

P (n)/Q(n)

kn
= lim

n→∞
n∈N

P (n)/Q(n)

n| deg(P )−deg(Q)|+1
· lim
n→∞
n∈N

n| deg(P )−deg(Q)|+1

kn
= 0 · 0 = 0.

This completes the proof. □

Theorem 2.9. Let γ1(x), γ2(x), γ3(x) be polynomials with real coefficients. Let 2c1− j1c0 and
2c1 − j2c0 be non-zero. If γ1(n)sn+1 + γ2(n)sn + γ3(n) = 0 holds for all n ∈ N, then γ1(x),
γ2(x), γ3(x) are zero polynomials.

Proof. We know from Lemma 2.2 that there exists a number N ∈ N so that sn ̸= 0 for all
n ≥ N . Dividing both sides of identity γ1(n)sn+1 + γ2(n)sn + γ3(n) = 0 by sn over integers
n ≥ N implies

(∀n ∈ N, n ≥ N) γ1(n)
sn+1

sn
+ γ2(n) +

γ3(n)

sn
= 0 (15)

Later, we also note the identity

(∀n ∈ N, n ≥ N) γ1(n)

(
−sn+1

sn
+

j1
2

)
=

−γ1(n)(2c1 − j1c0)
√
a2 + 4b

(2c1 − j2c0) (j1/j2)
n − (2c1 − j1c0)

(16)

Observe that j1/j2 < −1 < j2/j1 < 0 and j1/2 > 1. Then, by Lemma 2.8, we get

lim
n→∞
n∈N

γ3(n)

sn
= lim

n→∞
n∈N

2
√
a2 + 4b · γ3(n)

((2c1 − j2c0)− (2c1 − j1c0) (j2/j1)
n
) (j1/2)

n

= lim
n→∞
n∈N

2
√
a2 + 4b

((2c1 − j2c0)− (2c1 − j1c0) (j2/j1)
n
)
· lim
n→∞
n∈N

γ3(n)

(j1/2)
n

=
2
√
a2 + 4b

2c1 − j2c0
· 0 = 0.

Summing up the limit n → ∞ of (15) and (16) and then applying Lemma 2.8 yields

lim
n→∞
n∈N

(
γ1(n)

j1
2

+ γ2(n)

)
= lim

n→∞
n∈N

−γ1(n)(2c1 − j1c0)
√
a2 + 4b

(2c1 − j2c0) (j1/j2)
n − (2c1 − j1c0)

=
−(2c1 − j1c0)

√
a2 + 4b

2c1 − j2c0
· lim
n→∞
n∈N

γ1(n)

(j1/j2)
n = 0.

Since γ1(x)
j1
2 + γ2(x) ∈ R[x], by Lemma 2.7, then γ1(x)

j1
2 + γ2(x) is a zero polynomial.

Substituting γ2(x) = − j1
2 γ1(x),∀x ∈ R to identity γ1(n)sn+1 + γ2(n)sn + γ3(n) = 0,∀n ∈ N

yields

(∀n ∈ N) 0 = γ1(n)sn+1 + γ2(n)sn + γ3(n) = γ1(n) ·
(
sn+1 −

j1
2
sn

)
+ γ3(n)

=
2c1 − j1c0

2

(
j2
2

)n

γ1(n) + γ3(n)

=⇒ (∀n ∈ N)
2c1 − j1c0

2

(
j2
2

)n

γ1(n) + γ3(n) = 0 (17)

If one of γ1(x) or γ3(x) is a zero polynomial, by equation (17) it implies that both of γ1(x) and
γ3(x) are zero polynomials. Then γ2 is a zero polynomial too, and the theorem is done.
If both of γ1(x) and γ3(x) are not zero polynomials, then there exists M1 ∈ N such that
γ1(x) ̸= 0 and γ3(x) ̸= 0 for all x ≥ M1. From the identity (17), we have

(∀n ∈ N, n ≥ M1)
γ3(n)

γ1(n)
=

−(2c1 − j1c0)

2

(
j2
2

)n

(18)
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then

(∀n ∈ N, n ≥ M1)

∣∣∣∣γ3(n)γ1(n)

∣∣∣∣ = 1

2
|2c1 − j1c0|

∣∣∣∣j22
∣∣∣∣n (19)

Let us observe (18) and (19) into 3 possibilities: b− a > 1, b− a = 1, and b− a < 1.

Case b− a > 1:
Observe that j2/2 < −1. Therefore, by (18) and Lemma 2.8,

−(2c1 − j1c0)

2
= lim

n→∞
n∈N

γ3(n)/γ1(n)

(j2/2)
n = 0

then 2c1 − j1c0 = 0, a contradiction.

Case b− a = 1:
We now have j2/2 = −1, so the identities (18) and (19) respectively become

(∀n ∈ N, n ≥ M1)
γ3(n)

γ1(n)
=

−(2c1 − j1c0)

2
(−1)

n
(20)

and

(∀n ∈ N, n ≥ M1)

∣∣∣∣γ3(n)γ1(n)

∣∣∣∣ = 1

2
|2c1 − j1c0| (21)

From (21), it indicates that either γ3(n) =
1
2 (2c1 − j1c0)γ1(n) for infinitely many integers n

or γ3(n) = − 1
2 (2c1 − j1c0)γ1(n) for infinitely many integers n.

If γ3(n) =
1
2 (2c1−j1c0)γ1(n) for infinitely many integers n, it implies γ3(x) =

1
2 (2c1−j1c0)γ1(x)

for all x ∈ R. Therefore, we can rewrite (20) by

(∀n ∈ N, n ≥ M1)
2c1 − j1c0

2
=

−(2c1 − j1c0)

2
(−1)

n
(22)

Setting to (22) when n is even yields that 2c1 − j1c0 = 0, a contradiction.
If γ3(n) = − 1

2 (2c1−j1c0)γ1(n) for infinitely many integers n, then γ3(x) = − 1
2 (2c1−j1c0)γ1(x)

for all x ∈ R. So we can rewrite (20) by

(∀n ∈ N, n ≥ M1) − 1

2
(2c1 − j1c0) =

−(2c1 − j1c0)

2
(−1)

n
(23)

Setting to (23) when n is odd yields that 2c1 − j1c0 = 0, a contradiction.

Case b− a < 1:
We have that 2/j2 < −1. By identity (18) and Lemma 2.8,

2

2c1 − j1c0
= − lim

n→∞
n∈N

γ1(n)/γ3(n)

(2/j2)
n = 0

which is impossible since 2
2c1−j1c0

itself is non-zero.

In conclusion, γ1(x), γ2(x), γ3(x) must be zero polynomials. □

Theorem 2.10. Let γ1(x), γ2(x), γ3(x) be polynomials with real coefficients, 0 ∈ {2c1 −
j1c0, 2c1 − j2c0}, and γ1(n)sn+1 + γ2(n)sn + γ3(n) = 0 for all n ∈ N.
(i). If 2c1 − j1c0 = 0, then γ2(x) ≡ −j1

2 · γ1(x) and γ3(x) ≡ 0.

(ii). If 2c1 − j2c0 = 0, then γ2(x) ≡ −j2
2 · γ1(x) and γ3(x) ≡ 0.

Proof. (i). If 2c1 − j1c0 = 0, then sn = (j1/2)
nK1 for all n ∈ N0, where K1 = 2c1−j2c0

2
√
a2+4b

is a

non-zero real constant. The identity γ1(n)sn+1 + γ2(n)sn + γ3(n) = 0, ∀n ∈ N becomes(
γ1(n)

j1
2

+ γ2(n)

)(
j1
2

)n

K1 + γ3(n) = 0, ∀n ∈ N (24)
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⇐⇒ γ1(n)
j1
2

+ γ2(n) =
−1

K1
· γ3(n)

(j1/2)
n , ∀n ∈ N.

Observe that j1/2 > 1. By Lemma 2.8, we have

lim
n→∞
n∈N

(
γ1(n)

j1
2

+ γ2(n)

)
= lim

n→∞
n∈N

−1

K1
· γ3(n)

(j1/2)
n = 0.

Since γ1(x)
j1
2 +γ2(x) ∈ R[x], by Lemma 2.7, it leads to the result that j1

2 ·γ1(x)+γ2(x) is zero

polynomial, then γ2(x) ≡ −j1
2 · γ1(x). Also, equation (24) implies γ3(x) ≡ 0.

(ii). If 2c1−j2c0 = 0, we have sn = (j2/2)
nK2 for all n ∈ N, whereK2 = −2c1+j1c0

2
√
a2+4b

is a non-zero

real constant. Therefore, we can rewrite the identity γ1(n)sn+1 + γ2(n)sn + γ3(n) = 0, ∀n ∈ N
by (

γ1(n)
j2
2

+ γ2(n)

)(
j2
2

)n

K2 + γ3(n) = 0, ∀n ∈ N (25)

Let us denote the polynomial γ1(x)
j2
2 + γ2(x) by γ4(x). The identity (25) is equivalent to

γ4(n)

(
j2
2

)n

K2 + γ3(n) = 0, ∀n ∈ N (26)

Note that if either γ3(x) or γ4(x) is zero polynomial, then both of them becomes zero polyno-

mials. Hence γ2(x) ≡ −j2
2 · γ1(x) and γ3(x) ≡ 0, done.

If γ3(x) and γ4(x) are not zero polynomials, then there exists M2 ∈ N in such a way that
γ3(x) ̸= 0, γ4(x) ̸= 0 for all real x ≥ M2. So the identity (26) implies the following two
identities:

(∀n ∈ N, n ≥ M2)
γ3(n)

γ4(n)
= −K2

(
j2
2

)n

(27)

(∀n ∈ N, n ≥ M2)

∣∣∣∣γ3(n)γ4(n)

∣∣∣∣ = |K2|
∣∣∣∣j22
∣∣∣∣n (28)

We intend to investigate (27) and (28) in 3 cases: b > a+ 1, b = a+ 1, b < a+ 1.
Case b > a+ 1: We have j2/2 < −1. Hence by (27) and Lemma 2.8, it leads to the result

−K2 = lim
n→∞
n∈N

γ3(n)/γ4(n)

(j2/2)
n = 0,

it is a contradiction.

Case b = a+ 1: In this case, j2/2 = −1. The identities (27) and (28) can be rewritten as
the following two:

(∀n ∈ N, n ≥ M2)
γ3(n)

γ4(n)
= −K2 (−1)

n
(29)

(∀n ∈ N, n ≥ M2)

∣∣∣∣γ3(n)γ4(n)

∣∣∣∣ = |K2| (30)

The identity (30) gives us the fact that either γ3(n) = K2γ4(n) for infinitely many integers n
or γ3(n) = −K2γ4(n) for infinitely many integers n.

If γ3(n) = K2γ4(n) for infinitely many integers n, it implies that γ3(x) = K2γ4(x) for all
real x. Substituting it to (29) and setting when n is even yields that K2 = 0, a contradiction.

If γ3(n) = −K2γ4(n) for infinitely many integers n, then γ3(x) = −K2γ4(x) for all real
x. Substituting it to (29) and setting when n is odd yields that K2 = 0, a contradiction.
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Case b < a+ 1: In this case, we have the fact 2/j2 < −1. By (27) and Lemma 2.8, we obtain

−1

K2
= lim

n→∞
n∈N

γ4(n)/γ3(n)

(2/j2)
n = 0,

but it is impossible.
In conclusion, the result must be γ2(x) ≡ −j2

2 · γ1(x) and γ3(x) ≡ 0. □

3. Three Main Theorems

This section presents three main theorems of this paper, explaining the identity and properties
of series

∑n
k=1 P (x)sk−1 for a polynomial P (x) in R[x]. These theorems give the main result

about finite series involving a polynomial of real coefficients and certain generalized Fibonacci
sequence.

Theorem 3.1 is a development of Lemma 2.4 and Theorem 2.5, because Lemma 2.4 and
Theorem 2.5 only represent the summation

∑n
k=1 k

dsk−1 for arbitrary d ∈ N0, while Theorem
3.1 represents the summation

∑n
k=1 P (k)sk−1 for all general polynomials P (x) ∈ R[x]. For an

arbitrary P (x) ∈ R[x], we can find the existence of polynomials F1(x), G1(x), H1(x) ∈ R[x]
satisfying the identity

∑n
k=1 P (k)sk−1 = F1(n)sn+1 +G1(n)sn +H1(n), ∀n ∈ N.

Theorem 3.1. Let P (x) be a polynomial with real coefficients. Then there exists a triple of
polynomials (F1(x), G1(x), H1(x)) with real coefficients so that

∑n
k=1 P (k)sk−1 = F1(n)sn+1 +

G1(n)sn +H1(n), ∀n ∈ N.

Proof. Consider a polynomial P (x) ∈ R[x].
We can state that P (x) = amxm + am−1x

m−1 + · · · + a1x + a0 for some m ∈ N0 and
a0, a1, . . . , am ∈ R. An example of triple (F1(x), G1(x), H1(x)) which satisfies the identity∑n

k=1 P (k)sk−1 = F1(n)sn+1 +G1(n)sn +H1(n), ∀n ∈ N is

F1(x) =

m∑
d=0

adF1,d(x); G1(x) =

m∑
d=0

adG1,d(x); H1(x) =

m∑
d=0

adH1,d(x)

where F1,d(x), G1,d(x), H1,d(x) are polynomials as defined in Theorem 2.5 part (ii).
Hence, the result follows. □

Not only that, for a polynomial P (x) ∈ R[x], we also determine how many triples
(F1(x), G1(x), H1(x)) ∈ R[x]3 satisfying the identity

∑n
k=1 P (k)sk−1 = F1(n)sn+1+G1(n)sn+

H1(n), ∀n ∈ N. Here, we get the result that if both of 2c1 − j1c0 and 2c1 − j2c0 are non-zero,
then the triple (F1(x), G1(x), H1(x)) is unique. If one of 2c1 − j1c0 or 2c1 − j2c0 equals zero,
then there are infinitely many triples (F1(x), G1(x), H1(x)).

Theorem 3.2. Let P (x) be a polynomial of real coefficients. If both of 2c1 − j1c0 and
2c1 − j2c0 are non-zero, then the triple (F1(x), G1(x), H1(x)) ∈ R[x]3 satisfying the identity∑n

k=1 P (k)sk−1 = F1(n)sn+1 +G1(n)sn +H1(n), ∀n ∈ N is unique.

Proof. Suppose that (F2(x), G2(x), H2(x)) and (F3(x), G3(x), H3(x)) are the ordered solution
of (F1(x), G1(x), H1(x)) which satisfy the identity

∑n
k=1 P (k)sk−1 = F1(n)sn+1 + G1(n)sn +

H1(n), ∀n ∈ N. Then we have
n∑

k=1

P (k)sk−1 = F2(n)sn+1 +G2(n)sn +H2(n) = F3(n)sn+1 +G3(n)sn +H3(n), ∀n ∈ N

then
(F2 − F3)(n)sn+1 + (G2 −G3)(n)sn + (H2 −H3)(n) = 0, ∀n ∈ N.
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Since (F2 −F3)(x), (G2 −G3)(x), (H2 −H3)(x) are polynomials with real coefficients, by The-
orem 2.9 we get that (F2 −F3)(x), (G2 −G3)(x), (H2 −H3)(x) are identically zero. Therefore
F2(x), G2(x), H2(x) are identically equal to F3(x), G3(x), H3(x) respectively.
Hence the triple of polynomials (F1(x), G1(x), H1(x)) ∈ R[x]3 which satisfies the identity∑n

k=1 P (k)sk−1 = F1(n)sn+1 +G1(n)sn +H1(n), ∀n ∈ N is unique. □

Theorem 3.3. Let P (x) be a polynomial of real coefficients. If either 2c1 − j1c0 or 2c1 − j2c0
is equal to 0, then there are infinitely many triples (F1(x), G1(x), H1(x)) ∈ R[x]3 satisfying the
identity

∑n
k=1 P (k)sk−1 = F1(n)sn+1 +G1(n)sn +H1(n), ∀n ∈ N.

Proof. Define that Ω1 and Ω2 are the sets of all triples (F1(x), G1(x), H1(x)) ∈ R[x]3 satisfying
the identity

∑n
k=1 P (k)sk−1 = F1(n)sn+1 + G1(n)sn + H1(n), ∀n ∈ N with the constraints

2c1 − j1c0 = 0 and 2c1 − j2c0 = 0 respectively. Let P (x) = amxm + am−1x
m−1 + · · ·+ a1x+ a0

for some m ∈ N0 and a0, a1, · · · , am ∈ R.
If 2c1 − j1c0 = 0. For all (F2(x), G2(x), H2(x)) and (F3(x), G3(x), H3(x)) in Ω1, we have

n∑
k=1

P (k)sk−1 = F2(n)sn+1 +G2(n)sn +H2(n) = F3(n)sn+1 +G3(n)sn +H3(n), ∀n ∈ N

then

(F2 − F3)(n)sn+1 + (G2 −G3)(n)sn + (H2 −H3)(n) = 0, ∀n ∈ N.

then, by Theorem 2.10,

−j1
2

· (F2 − F3)(x) ≡ (G2 −G3)(x) and (H2 −H3)(x) ≡ 0

⇐⇒ j1
2

· (F2 +G2)(x) ≡
j1
2

· F3(x) +G3(x) and H2(x) ≡ H3(x).

It is clear that (
∑m

d=0 adF1,d(x),
∑m

d=0 adG1,d(x),
∑m

d=0 adH1,d(x)) is an element in Ω1, so it
leads to the fact that for all (F (x), G(x), H(x)) in Ω1,

j1
2

· F (x) +G(x) ≡ j1
2

m∑
d=0

adF1,d(x) +

m∑
d=0

adG1,d(x) and H(x) ≡
m∑

d=0

adH1,d(x).

Therefore

Ω1 = {(F (x),
−j1
2

· F (x) +
j1
2

m∑
d=0

adF1,d(x) +

m∑
d=0

adG1,d(x),

m∑
d=0

adH1,d(x))
∣∣ F (x) ∈ R[x]}

and it is obvious that |Ω1| = ∞.

It is also similar when 2c1 − j2c0 = 0. We will directly get

Ω2 = {(F (x),
−j2
2

· F (x) +
j2
2

m∑
d=0

adF1,d(x) +

m∑
d=0

adG1,d(x),

m∑
d=0

adH1,d(x))
∣∣ F (x) ∈ R[x]}.

and then |Ω2| = ∞.
Hence, |Ω1| = ∞ and |Ω2| = ∞ complete the proof. □
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4. Summary

The following are summary of the results in this paper.

First . Let P (x) be a polynomial of real coefficients and (sn)n≥0 be generalized Fibonacci
sequence with s0 = c0, s1 = c1, and sn+1 = asn + bsn−1 for all n ∈ N where (a, b) ∈ N2 and
(c0, c1) ∈ Z2\{(0, 0)}. Then there exist polynomials F1(x), G1(x), H1(x) of real coefficients
satisfying the identity

n∑
k=1

P (k)sk−1 = F1(n)sn+1 +G1(n)sn +H1(n), ∀n ∈ N.

Since P (x) ∈ R[x], let us suppose that P (x) = amxm + am−1x
m−1 + · · ·+ a1x+ a0 for some

m ∈ N0 and some a0, a1, . . . , am ∈ R. Therefore, an example of triple (F1(x), G1(x), H1(x)) ∈
R[x]3 satisfying the identity

∑n
k=1 P (k)sk−1 = F1(n)sn+1 +G1(n)sn +H1(n), ∀n ∈ N is

F1(x) =

m∑
d=0

adF1,d(x); G1(x) =

m∑
d=0

adG1,d(x); H1(x) =

m∑
d=0

adH1,d(x)

where the polynomials F1,d(x), G1,d(x), H1,d(x) for each d ∈ N0 are defined by

F1,d(x) =

d∑
i=0

bi(d)x
i, G1,d(x) = −(x+ 1)d +

(
d∑

i=0

(x+ 1)ibi(d)

)
b,

and H1,d(x) = c0 + 2dc1 − (ac1 + bc0)

d∑
i=0

bi(d)− bc1

d∑
i=0

2ibi(d)

where (b0(d), b1(d), . . . , bd(d)) is the unique solution of equation

Bd (b0(d), b1(d), . . . , bd(d))
T
=

((
d

0

)
2d,

(
d

1

)
2d−1, . . . ,

(
d

d

)
20
)T

where Bd = (bi,j)
d+1
i,j=1 is a (d+ 1)× (d+ 1) real square matrix with

bi,j =


0 if i > j

a+ b− 1 if i = j

(2j−ib+ a)
(
j−1
i−1

)
if i < j.

Second . Let P (x) be a polynomial of real coefficients and (sn)n≥0 be generalized Fi-
bonacci sequence with s0 = c0, s1 = c1, and sn+1 = asn+ bsn−1 for all n ∈ N where (a, b) ∈ N2

and (c0, c1) ∈ Z2\{(0, 0)}. The triple (F1(x), G1(x), H1(x)) ∈ R[x]3 satisfying the identity

n∑
k=1

P (k)sk−1 = F1(n)sn+1 +G1(n)sn +H1(n), ∀n ∈ N.

in ensured to be exist, but is not guaranteed to be unique. We consider two possible cases of
(sn)n≥0 which imply the uniqueness and the non-uniqueness of such triple (F1(x), G1(x), H1(x)),
as follows.
CASE 1: For (sn)n≥0 with constraints 2c1−(a+

√
a2 + 4b)c0 ̸= 0 and 2c1−(a−

√
a2 + 4b)c0 ̸= 0,

then the triple (F1(x), G1(x), H1(x)) ∈ R[x]3 which satisfies the identity
∑n

k=1 P (k)sk−1 =
F1(n)sn+1 + G1(n)sn + H1(n), ∀n ∈ N is unique. Furthermore, if we set P (x) = amxm +
am−1x

m−1 + · · · + a1x + a0 for some m ∈ N0 and a0, a1, . . . , am ∈ R, the unique triple
(F1(x), G1(x), H1(x)) ∈ R[x] which satisfy the identity

∑n
k=1 P (k)sk−1 = F1(n)sn+1+G1(n)sn+

H1(n), ∀n ∈ N is

F1(x) =

m∑
d=0

adF1,d(x); G1(x) =

m∑
d=0

adG1,d(x); H1(x) =

m∑
d=0

adH1,d(x)
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where the polynomials F1,d(x), G1,d(x), H1,d(x) for each d ∈ N0 are defined by

F1,d(x) =

d∑
i=0

bi(d)x
i, G1,d(x) = −(x+ 1)d +

(
d∑

i=0

(x+ 1)ibi(d)

)
b,

and H1,d(x) = c0 + 2dc1 − (ac1 + bc0)

d∑
i=0

bi(d)− bc1

d∑
i=0

2ibi(d)

where (b0(d), b1(d), . . . , bd(d)) is the unique solution of equation

Bd (b0(d), b1(d), . . . , bd(d))
T
=

((
d

0

)
2d,

(
d

1

)
2d−1, . . . ,

(
d

d

)
20
)T

where Bd = (bi,j)
d+1
i,j=1 is a (d+ 1)× (d+ 1) real square matrix with

bi,j =


0 if i > j

a+ b− 1 if i = j

(2j−ib+ a)
(
j−1
i−1

)
if i < j.

CASE 2: For (sn)n≥0 with either 2c1 − (a +
√
a2 + 4b)c0 = 0 or 2c1 − (a −

√
a2 + 4b)c0 = 0,

then there are infinitely many triples (F1(x), G1(x), H1(x)) ∈ R[x]3 satisfying the identity∑n
k=1 P (k)sk−1 = F1(n)sn+1 + G1(n)sn + H1(n), ∀n ∈ N. Suppose that Ω1 and Ω2 are

the sets of all triples (F1(x), G1(x), H1(x)) ∈ R[x]3 satisfying the identity
∑n

k=1 P (k)sk−1 =

F1(n)sn+1 + G1(n)sn + H1(n), ∀n ∈ N when 2c1 − (a +
√
a2 + 4b)c0 = 0 and 2c1 − (a −√

a2 + 4b)c0 = 0 respectively. If we set P (x) = amxm + am−1x
m−1 + · · · + a1x + a0 for some

m ∈ N0 and a0, a1, . . . , am ∈ R, then we have

Ω1 = {(F (x),
−j1
2

· F (x) +
j1
2

m∑
d=0

adF1,d(x) +

m∑
d=0

adG1,d(x),

m∑
d=0

adH1,d(x))
∣∣ F (x) ∈ R[x]}

and

Ω2 = {(F (x),
−j2
2

· F (x) +
j2
2

m∑
d=0

adF1,d(x) +

m∑
d=0

adG1,d(x),

m∑
d=0

adH1,d(x))
∣∣ F (x) ∈ R[x]}

where j1 = a+
√
a2 + 4b, j2 = a−

√
a2 + 4b, and the polynomials F1,d(x), G1,d(x), H1,d(x) for

each d ∈ N0 are defined by

F1,d(x) =

d∑
i=0

bi(d)x
i, G1,d(x) = −(x+ 1)d +

(
d∑

i=0

(x+ 1)ibi(d)

)
b,

and H1,d(x) = c0 + 2dc1 − (ac1 + bc0)

d∑
i=0

bi(d)− bc1

d∑
i=0

2ibi(d)

where (b0(d), b1(d), . . . , bd(d)) is the unique solution of equation

Bd (b0(d), b1(d), . . . , bd(d))
T
=

((
d

0

)
2d,

(
d

1

)
2d−1, . . . ,

(
d

d

)
20
)T

where Bd = (bi,j)
d+1
i,j=1 is a (d+ 1)× (d+ 1) real square matrix with

bi,j =


0 if i > j

a+ b− 1 if i = j

(2j−ib+ a)
(
j−1
i−1

)
if i < j.
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5. Conclusion

This research yields the new identity of series
∑n

k=1 P (k)sk−1 where P (x) is a polynomial
in R[x] and (sn)n≥0 is generalized Fibonacci sequence with s0 = c0, s1 = c1, and sn+1 =
asn+bsn−1,∀n ∈ N where (a, b) ∈ N2 and (c0, c1) ∈ Z2\{(0, 0)}. For a polynomial P (x) ∈ R[x],
we have the identity

∑n
k=1 P (x)sk−1 = F1(n)sn+1 + G1(n)sn + H1(n), ∀n ∈ N for some

polynomials F1(x), G1(x), H1(x) in R[x]. Besides that, we also determine how many triple
(F1(x), G1(x), H1(x) ∈ R[x]3 satisfying the identity

∑n
k=1 P (k)sk−1 = F1(n)sn+1 +G1(n)sn +

H1(n), ∀n ∈ N for a polynomial P (x) ∈ R[x]. If neither 2c1− (a+
√
a2 + 4b)c0 nor 2c1− (a−√

a2 + 4b)c0 equals zero, then for a polynomial P (x) ∈ R[x], the triple (F1(x), G1(x), H1(x)) ∈
R[x]3 which satisfy the identity

∑n
k=1 P (k)sk−1 = F1(n)sn+1 + G1(n)sn +H1(n), ∀n ∈ N is

unique. If either 2c1 − (a +
√
a2 + 4b)c0 or 2c1 − (a −

√
a2 + 4b)c0 equals zero, then for a

polynomial P (x) ∈ R[x], there are infinitely many triples (F1(x), G1(x), H1(x)) ∈ R[x]3 which
satisfy the identity

∑n
k=1 P (k)sk−1 = F1(n)sn+1 +G1(n)sn +H1(n), ∀n ∈ N.
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