Distribusi Kuartil Berdasarkan Statistik Urutan dari Sampel Acak Berdistribusi Seragam Sederhana

NAR HERRHYANTO, FITRIANI AGUSTINA, DAN FITRI RAHMAWATI

Program Studi Matematika, FPMIPA, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudhi No. 229 Bandung 40154 Email: herrhyanton@gmail.com

Abstrak

Penelitian ini bertujuan untuk menentukan distribusi kuartil berdasarkan statistik urutan dari sampel acak berasal dari populasi berdistribusi seragam sederhana dengan menggunakan teknik transformasi peubah acak. Distribusi seragam sederhana ini mempunyai fungsi kepadatan peluang berupa konstanta sebesar 1 untuk nilai peubah acak bernilai antara 0 dan 1. Statistik urutan ini diperoleh berdasarkan sampel acak X_1, X_2, X_3, X_4 . Dari statistik urutan ini bisa diperoleh kuartil. Teknik transformasi peubah acak ini melibatkan dua peubah acak, artinya dalam transformasi itu melibatkan dua peubah acak lama dan dua peubah acak baru. Dua peubah acak lamanya merupakan statistik urutan yang didefinisikan atas sampel acak, dua peubah acak baru berupa kuartil dan peubah acak lainnya. Metode penelitian yang digunakan adalah studi literatur. Hasil temuan yang diperoleh adalah distribusi dari kuartil kesatu berbentuk $h_1(q_1) = \frac{16}{3} \left[(1-q_1)^3 - (1-4q_1)^3 \right], \ 0 \le q_1 < 0.25;$ $h_1(q_1) = \frac{16}{3}(1-q_1)^3, \ 0.25 < q_1 < 1;$ dan $h_1(q_1) = 0;$ untuk q_1 lainnya. Untuk distribusi dari kuartil kedua berbentuk $h_2(q_2)=\frac{1}{8}(3q_2^2-q_2^3),~0\leq q_2<2;$ $h_2(q_2) = \frac{3}{4}q_2^4 - \frac{75}{16}q_2^3 + \frac{126}{144}q_2^2 - 6$, $2 < q_2 < 4$; dan $h_2(q_2) = 0$; untuk q_2 lainnya. Untuk distribusi dari kuartil ketiga berbentuk $h_3(q_3) = \frac{16}{3}q_3^3$, $0 \le q_3 < 0.75$; $h_3(q_3) = -336q_3^3 + 768q_3^2 - 576q_3 + 144, 0,75 < q < 1;$ dan $h_3(q_3) = 0;$ q_3 lainnya. Kata kunci: Ditribusi Seragam, Kuartil, Sampel Acak, Statistik Urutan, Teknik Transformasi Peubah Acak.

Abstract

This research aims to determine the quartile distribution of a random sample from a population with a simple uniform distribution using random variable transformation techniques. This simple uniform distribution has a probability density function in the form of a constant of 1 for random variable values between 0 and 1. This order statistic is obtained based on random sample X_1, X_2, X_3, X_4 . From this order statistic, quartiles can be obtained. This random variable transformation technique involves two random variables, meaning that the transformation involves two old random variables and two new random variables. The two long random variables are order statistics defined over a random sample. The research method used is literature study. The findings obtained are that the distribution of the first quartile is in the form $h_1(q_1) = \frac{16}{3} \left[(1-q_1)^3 - (1-4q_1)^3 \right], \ 0 \le q_1 < 0.25;$ $h_1(q_1) = \frac{16}{3} (1-q_1)^3, \ 0.25 < q_1 < 1;$ and $h_1(q_1) = 0;$ for other q_1 . The distribution of the second quartile is in the form $h_2(q_2) = \frac{1}{8} (3q_2^2 - q_2^3),$ $0 \le q_2 < 2;$ $h_2(q_2) = \frac{3}{4} q_2^4 - \frac{75}{16} q_2^3 + \frac{126}{144} q_2^2 - 6,$ $2 < q_2 < 4;$ and $h_2(q_2) = 0;$ for other q_2 . The distribution of the third quartile is in the form $h_3(q_3) = \frac{16}{3} q_3^3,$ $0 \le q_3 < 0.75;$ $h_3(q_3) = -336q_3^3 + 768q_3^2 - 576q_3 + 144,$ 0.75 < q < 1; and $h_3(q_3) = 0;$ for other q_3 .

Keywords: Uniform Distribution, Quartile, Random Sample, Order Statistics, Random Variable Transformation Technique

1. Pendahuluan

Dalam statistika, kuartil merupakan salah satu ukuran yang termasuk ke dalam ukuran pemusatan dalam penganalisisan data. Kenyataan dalam kehidupan sehari-hari kuartil ini banyak dilakukan dalam penggunaannya, termasuk penelitian. Beberapa penelitian difokuskan terhadap penerapan nilai kuartil, dan tidak ada peneliti lain yang memfokuskan kepada nilai kuartil secara teoritis. Penelitian yang dilakukan oleh [1] bertujuan untuk memberikan informasi tentang studi morfometri udang Bintik Coklat yang tertangkap di perairan Muara Ilu, Kecamatan Anggana, Kabupaten Kutai Kartanegara. Kemudian penelitian lain [2] yang bertujuan untuk mengkaji hubungan antara pengetahuan tingkat kecukupan gizi dan perilaku pemberian makan ibu dengan kejadian stunting pada balita di wilayah Posyandu Kecamatan Medan Belawan, variabel pola asuh makan, sebanyak 40% (12 orang) ibu memiliki skor pola asuh pada kuartil 1, sebanyak 23,3% (7 orang) ibu memiliki skor pola asuh pada kuartil 4, dan sisanya sebanyak 16,7% (5 orang) ibu memiliki skor pola asuh pada kuartil 2. Oleh karena itu pada paper ini dilakukan penelitian untuk nilai kuartil secara teoritis, yang diperoleh dari statistik urutan berdasarkan sampel acak yang berasal dari populasi berdistribusi seragam.

Misalkan $Y_1 < Y_2 < Y_3 < \cdots < Y_n$ adalah statistik urutan dari sampel acak berukuran n $(X_1, X_2, X_3, \ldots, X_n)$ yang berasal dari populasi berdistribusi dengan fungsi kepadatan bentuk tertentu. Kemudian dari sampel acak tersebut dihitung kuartil ke-i (Q_i) yang bentuknya berupa statistik urutan. Jika nilai i dan n diketahui, maka bisa diketahui bentuk rumus kuartil ke-i. Dalam penelitian ini nilai i dan n dibatasi, yaitu i=1 dan n=4 dan distribusi dari populasinya diketahui seragam pada nilai $\alpha=0$ dan $\beta=1$, maka akan ditentukan distribusi dari kuartil kesatu (Q_1) , kuartil kedua (Q_2) , dan kuartil ketiga (Q_3) dengan menggunakan teknik transformasi peubah acak. Tujuan yang ingin dicapai dalam penelitian ini adalah menganalisis distribusi kuartil berdasarkan statistik urutan yang berasal dari sampel acak berdistribusi seragam. Metode penelitian yang digunakan adalah metode studi literatur atau studi kepustakaan.

2. Metode Penelitian

Penelitian ini membahas tentang penentuan distribusi kuartil dari sampel acak berukuran tertentu yang berdistribusi seragam sederhana, dan ini merupakan pembahasan materi secara teoritis dalam statistika sehingga metode penelitiannya adalah metode studi literatur atau studi kepustakaan [3]. Pada penelitian ini dibutuhkan fungsi kepadatan peluang distribusi seragam sederhana, kuartil, sampel acak, statistik urutan termasuk fungsi kepadatan peluang gabungan dari peubah acak Y_i dan Y_j , dan teknik transformasi peubah acak.

2.1. Distribusi Seragam. Peubah acak X dikatakan mengikuti distribusi seragam pada interval (α, β) jika fungsi kepadatan peluang (fkp) nya berbentuk:

$$f(x; \alpha, \beta) = \begin{cases} \frac{1}{\beta - \alpha}, & \alpha < x < \beta \\ 0, & \text{lainnya} \end{cases}$$

Karakteristik dari distribusi seragam adalah sebagai berikut:

(1)
$$E(X) = \frac{1}{2}(\alpha + \beta)$$

(2) $Var(X) = \frac{(\beta - \alpha)^2}{12}$
(3) $M_X(t) = \begin{cases} \frac{1}{t(\beta - \alpha)}(e^{\beta t} - e^{\alpha t}), & t \neq 0\\ 1, & t \text{ lainnya} \end{cases}$

paper ini menggunakan $\alpha=0$ dan $\beta=1,$ sehingga fungsi kepadatan peluangnya berbentuk:

$$f(x) = \begin{cases} 1, & 0 < x < 1 \\ 0, & \text{lainnya} \end{cases}$$

2.2. Kuartil. Misalkan ada sekumpulan data yang nilainya sudah diurutkan dari terkecil sampai terbesar. Kemudian sekumpulan data tersebut dibagi dua bagian, maka pembaginya ada satu buah dan disebut median. Apabila sekumpulan datanya dibagi empat bagian, maka pembaginya ada tiga buah disebut kuartil. Jadi kuartil adalah pembagi yang membagi sekumpulan data menjadi empat bagian sama, setelah sekumpulan data tersebut diurutkan dari nilai terkecil sampai nilai terbesar [4].

Penghitungan nilai kuartil ini dibagi menjadi dua bagian, yaitu data tidak terkelompok dan data terkelompok. Dalam penelitian ini hanya dibahas data tidak terkelompok. Penghitungan nilai kuartil Q dilakukan sebagai berikut [5]:

- a. Letak $Q_i=$ data ke- $\frac{i(n+1)}{4},\quad i=1,2,3$ b. Nilai Q_i bergantung pada hasil akhir dari letak Q_i -nya. Apabila hasil letak Q_i berupa bilangan bulat, maka nilai Q_i langsung dicari dari data yang sudah diurutkan. Apabila hasil letak Q_i berupa bilangan desimal, maka nilai Q_i dicari melalui perhitungan.
- 2.3. Sampel Acak. Pembahasan kuartil tidak terlepas dari sampel acak. Definisi sampel acak secara teoritis berbeda dengan secara terapan. Menurut [6], sampel acak didefinisikan secara teoritis sebagai berikut. Dikatakan eksperimen acak dimana hasilnya berupa peubah acak Xyang mempunyai fungsi densitas peluang f(x) diulang sebanyak kali secara bebas. Misalkan X_1, X_2, \ldots, X_n menunjukkan n buah peubah acak yang dihubungkan dengan hasil-hasilnya. Kumpulan peubah acak ini, saling bebas dan berdistribusi identik, dinamakan sampel acak dari distribusi dengan fungsi densitas peluang f(x). Bilangan n dinamakan ukuran sampel. Sedangkan [7] mendefinisikan sampel acak sebagai berikut. X_1, X_2, \ldots, X_n adalah sebuah sampel acak, yaitu himpunan peubah acak yang saling bebas dan berdistribusi identik berukuran n dari populasi dengan fungsi distribusinya $F_X(x)$. [8] menyatakan bahwa misalkan X adalah peubah acak dengan fungsi distribusinya F dan X_1, X_2, \ldots, X_n adalah n buah peubah acak

yang saling bebas dan berdistribusi identik dengan fungsi distribusinya F. Maka kumpulan X_1, X_2, \ldots, X_n dinamakan sebuah sampel acak berukuran n yang berasal dari fungsi distribusi F atau sederhananya sebagai n pengamatan yang saling bebas pada X. Dari beberapa pendapat di atas dapat disimpulkan bahwa X_1, X_2, \ldots, X_n dinamakan sebuah sampel acak berukuran n, jika dipenuhi syarat-syarat sebagai berikut :

- (1) X_1, X_2, \ldots, X_n adalah n buah peubah acak yang saling bebas,
- (2) X_1, X_2, \ldots, X_n adalah n buah peubah acak yang berdistribusi identik.

Misalkan X_1, X_2, \ldots, X_n adalah sebuah sampel acak berukuran n yang berasal dari populasi berdistribusi normal dengan mean $= \mu$ dan varians $= \sigma^2$. Dalam hal ini, X_1, X_2, \ldots, X_n adalah n buah peubah acak yang saling bebas, artinya fungsi kepadatan peluang (fkp) gabungan dari n buah peubah acak merupakan perkalian dari n buah fkp untuk masing-masing peubah acaknya. Kemudian X_1, X_2, \ldots, X_n adalah n buah peubah acak yang berdistribusi identik, artinya untuk setiap peubah acak $X_i, i = 1, 2, 3, \ldots, n$ mempunyai mean yang sama (yaitu μ), varians yang sama (yaitu σ^2), dan fungsi pembangkit momen yang sama (yaitu $\exp(\mu t + \frac{1}{2}\sigma^2 t^2)$).

2.4. **Statistik Urutan.** Apabila ada sekumpulan data yang nilai-nilainya diketahui, maka dapat diketahui nilai data terkecil, nilai data terbesar, nilai median, nilai rentang, dan sebagainya. Akan tetapi apabila ada nilai data yang nilainya tidak diketahui (berupa peubah acak), maka tidak bisa diketahui nilai data terkecil, nilai data terbesar, dihitung nilai median, dihitung nilai rentang, dan sebagainya. Oleh karena itu, agar nilai-nilai di atas dapat diketahui dan dihitung, maka akan dibahas statistik yang diurutkan atau statistik urutan (order statistic).

Dalam statistika sebuah sampel acak berukuran n biasanya disimbolkan $X_1, X_2, X_3, \ldots, X_n$. Dalam hal ini, akan ditentukan berapa besar nilai terkecil, nilai terbesar, nilai rentang, nilai median, nilai kuartil, atau nilai lainnya. Karena sampel acak berupa peubah acak, maka tidak bisa ditentukan dengan pasti berapa nilai-nilai di atas. Karena itu perlu didefinisikan nilai-nilai yang sudah diurutkan berdasarkan sampel acak tersebut. Misalkan Y_1 adalah nilai terkecil dari $(X_1, X_2, X_3, \ldots, X_n), Y_2$ adalah nilai terkecil kedua dari $(X_1, X_2, X_3, \ldots, X_n), Y_3$ adalah nilai terkecil ketiga dari $(X_1, X_2, X_3, \ldots, X_n), \ldots, Y_n$ adalah nilai terbesar dari $(X_1, X_2, X_3, \ldots, X_n)$. Secara umum akan disimbolkan dengan $Y_i, i = 1, 2, 3, \ldots, n$ dan ini disebut sebagai statistik urutan. Nilai statistik urutan ini bisa dibuat sebuah hubungan sebagai berikut: $Y_1 < Y_2 < Y_3 < \ldots < Y_n$.

Menurut [9], definisi statistik urutan sebagai berikut. Misalkan X_1, X_2, \ldots, X_n menyatakan sebuah sampel acak dari distribusi dengan jenis kontinu yang mempunyai fungsi densitas peluang berbentuk f(x) positif, untuk a < x < b. Misalkan Y_1 adalah nilai terkecil dari X_i, Y_2 adalah nilai terkecil kedua dari X_i, \ldots , dan Y_n adalah nilai terbesar dari X_i . Dengan demikian, $Y_1 < Y_2 < \ldots < Y_n$ mewakili X_1, X_2, \ldots, X_n apabila disusun dari terkecil sampai terbesar. Maka $Y_i, i = 1, 2, \ldots, n$, dinamakan statistik urutan ke-i dari sampel acak X_1, X_2, \ldots, X_n . Sedangkan [6] mendefinisikan statistik urutan sebagai berikut. Jika X_1, X_2, \ldots, X_n adalah anggota-anggota dari sampel acak berukuran n yang berasal dari distribusi kontinu, maka peubah acak $Y_1 < Y_2 < \ldots < Y_n$ menunjukkan statistik urutan dari sampel acak tersebut, dengan: Y_1 adalah nilai terkecil dari $X_1, X_2, \ldots, X_n, Y_2$ adalah nilai terkecil kedua dari $X_1, X_2, \ldots, X_n, \ldots, Y_n$ adalah nilai terbesar dari X_1, X_2, \ldots, X_n . Selanjutnya menurut [10], statistik urutan didefinisikan sebagai berikut. Misalkan Y_1, Y_2, \ldots, Y_n menunjukkan peubah acak kontinu yang saling bebas dengan fungsi distribusi F(y) dan fungsi densitas f(y). Peubah acak yang diurutkan Y_i dengan $Y_{(1)}, Y_{(2)}, \ldots, Y_{(n)}$, dimana $Y_{(1)} \leq Y_{(2)} \leq \ldots \leq Y_{(n)}$. Karena peubah acaknya kontinu, maka tanda sama dengan dapat dihilangkan. Dengan demikian:

$$Y_{(1)} = \min(Y_1, Y_2, \dots, Y_n)$$

nilai terkecil dari peubah acak Y_i dan

$$Y_{(n)} = \max(Y_1, Y_2, \dots, Y_n)$$

nilai terbesar dari peubah acak Y_i

Secara umum, sebuah sampel acak berukuran n biasa dinotasikan dengan X_1, X_2, X_3, \dots X_n . Dari sampel acak tersebut, maka tidak bisa diketahui atau dihitung besaran-besaran di atas. Hal ini disebabkan karena sampel acak tersebut belum ada nilainya. Untuk dapat menyelesaikan persoalan tersebut, maka perlu pemisalan. Apabila nilai data terkecil dari $(X_1, X_2, X_3, \dots, X_n)$ dimisalkan dengan Y_1 , nilai data terkecil kedua dimisalkan dengan Y_2 , \dots , nilai data terkecil ke-k dimisalkan dengan Y_k, \dots , nilai data terbesar dimisalkan dengan Y_n ; maka nilai-nilai Y tersebut bisa diurutkan sebagai berikut:

$$Y_1 < Y_2 < Y_3 < \ldots < Y_n$$

Dari hubungan di atas, maka Y_i dinamakan statistik urutan ke-i, $i = 1, 2, 3, \ldots, n$. Jadi statistik urutan didefinisikan sebagai ukuran yang dihitung dari sebuah sampel acak, dengan nilainya sudah diurutkan dari nilai terkecil sampai terbesar. Dari nilai-nilai tersebut akan diperoleh nilai Kuartil kesatu Q_1 , nilai Kuartil kedua Q_2 , dan nilai Kuartil ketiga Q_3 .

Misalkan $Y_1 < Y_2 < Y_3 < \ldots < Y_n$ adalah statistik urutan dari sampel acak berukuran n yang berasal dari populasi berdistribusi dengan fungsi kepadatan peluang f(x) positif untuk a < x < b. Fungsi kepadatan peluang gabungan dari $Y_1, Y_2, Y_3, \ldots, Y_n$ berbentuk sebagai berikut:

$$g(y_1, y_2, \dots, y_n) = \begin{cases} n! \cdot f(y_1) \cdot f(y_2) \cdot \dots \cdot f(y_n); & a < y_1 < y_2 < \dots < y_n < b \\ 0; & \text{lainnya} \end{cases}$$

Fungsi kepadatan peluang gabungan dari Y_i, Y_j ditentukan dengan rumus sebagai berikut:

Fungsi kepadatan peluang gabungan dari
$$Y_i, Y_j$$
 ditentukan dengan rumus sebagai berikut
$$g_{ij}(y_i, y_j) = \begin{cases} \frac{n!}{(i-1)! \ (j-i-1)! \ (n-j)!} \left[F(y_i) \right]^{i-1} \cdot \left[F(y_j) - F(y_i) \right]^{j-i-1} \\ \cdot \left[1 - F(y_j) \right]^{n-j} \cdot f(y_i) \cdot f(y_j); & a < y_i < y_j < b \\ 0; & \text{lainnya} \end{cases}$$

2.5. Teknik Transformasi Peubah Acak. Misalkan ada peubah acak, baik diskrit maupun kontinu dan mempunyai fungsi kepadatan peluangnya. Kemudian ada peubah acak baru yang merupakan fungsi dari peubah acak semula. Dalam hal ini akan ditentukan distribusi dari peubah acak baru tersebut. Penentuan distribusi tersebut salah satunya digunakan teknik transformasi peubah acak.

Langkah-langkah untuk menentukan fungsi kepadatan peluang dari kuartil berdasarkan statistik urutan yang diambil dari sampel berukuran 4, yaitu $Y_1 < Y_2 < Y_3 < Y_4$ dilakukan sebagai berikut [11]:

- (1) Transformasi peubah acak untuk $Q_1 = f(Y_1, Y_2), Q_2 = f(Y_2, Y_3), \operatorname{dan} Q_3 = f(Y_3, Y_4).$
- (2) Tentukan fungsi kepadatan peluang gabungan dari kedua peubah acak asalnya. Untuk Q_1 diperoleh $g_{12}(y_1, y_2)$, Q_2 diperoleh $g_{23}(y_2, y_3)$, dan Q_3 diperoleh $g_{34}(y_3, y_4)$.
- (3) Misalkan satu transformasi peubah acak lagi (disimbolkan dengan T) dengan bentuknya disesuaikan dengan bentuk transformasi yang diketahui. Untuk Q_1 diambil $T = Y_1$, Q_2 diambil $T = Y_2$, dan Q_3 diambil $T = Y_3$.
- (4) Tentukan nilai inversnya.
- (5) Tentukan matriks Jacobian.
- (6) Tentukan nilai mutlak dari determinan matriks Jacobian.
- (7) Tentukan distribusi gabungan dari kedua peubah acak transformasi. Untuk Q_1 diperoleh $h(q_1,t)$, untuk Q_2 diperoleh $h(q_2,t)$, dan untuk Q_3 diperoleh $h(q_3,t)$.
- Tentukan distribusi marginal dari peubah acak transformasi yang diketahui. Untuk Q_1 diperoleh $h_1(q_1) = \int_{-\infty}^{\infty} h(q_1, t) dt$, untuk Q_2 diperoleh $h_1(q_2) = \int_{-\infty}^{\infty} h(q_2, t) dt$, dan untuk Q_3 diperoleh $h_1(q_3) = \int_{-\infty}^{\infty} h(q_3, t) dt$.

3. Hasil dan Pembahasan

1. Berdasarkan rumus kuartil, datanya merupakan data tunggal, maka:

letak kuartil kesatu = data ke-
$$\frac{1(4+1)}{4}$$

= data ke-1,25
nilai kuartil kesatu = data ke-1 + 0,25 (data ke-2 - data ke-1)
= $Y_1 + 0,25(Y_2 - Y_1)$
= $Y_1 + 0,25Y_2 - 0,25Y_1$
= 0,75 $Y_1 + 0,25Y_2$

Dengan demikian diperoleh transformasinya dari Q_1 adalah $Q_1 = 0.75\,Y_1 + 0.25\,Y_2$. Karena transformasi yang diketahui berbentuk penjumlahan, maka dimisalkan transformasi keduanya berbentuk: $T = Y_1$. Fungsi kepadatan peluang gabungan dari Y_1, Y_2 adalah:

$$g_{1,2}(y_1, y_2) = \begin{cases} 12(1 - y_2)^2; & 0 < y_1 < y_2 < 1\\ 0; & \text{lainnya} \end{cases}$$

Hubungan antara nilai y_1 dari Y_1 dan nilai y_2 dari Y_2 dengan nilai q_1 dari Q_1 dan nilai t dari T diberikan dengan:

$$q_1 = 0.75 y_1 + 0.25 y_2$$
 dan $t = y_1$

Inversnya :
$$y_1 = t \text{ dan } y_2 = \frac{q_1 - 0.75t}{0.25}$$

Jacobian:

$$J = \begin{vmatrix} \frac{\partial y_1}{\partial t} & \frac{\partial y_1}{\partial q_1} \\ \frac{\partial y_2}{\partial t} & \frac{\partial y_2}{\partial q_1} \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ -3 & 4 \end{vmatrix} = 4 \quad \text{maka } |J| = 4$$

Fungsi kepadatan peluang gabungan dari Q_1 dan T adalah:

$$h(q_1, t) = \begin{cases} 48 \left(1 - \frac{q_1 - 0.75t}{0.25} \right)^2; & \text{untuk } 0 < t < 1, \ t < q_1 < 0.25 + 0.75t \\ 0; & \text{lainnya.} \end{cases}$$

Fungsi kepadatan peluang marginal untuk Q_1 adalah :

$$h_1(q_1) = \begin{cases} \int_0^{q_1} 48 \left(1 - \frac{q_1 - 0.75t}{0.25} \right)^2 dt = \frac{16}{3} \left[(1 - q_1)^3 - (1 - 4q_1)^3 \right]; & 0 \le q_1 < 0.25 \\ \int_{\frac{q_1 - 0.25}{0.75}}^{q_1} 48 \left(1 - \frac{q_1 - 0.75t}{0.25} \right)^2 dt = \frac{16}{3} (1 - q_1)^3; & 0.25 < q_1 < 1 \\ 0; & q \text{ lainnya.} \end{cases}$$

2. Berdasarkan rumus kuartil, datanya merupakan data tunggal, maka:

letak kuartil kedua = data ke-
$$\frac{2(4+1)}{4}$$

= data ke-2,5
nilai kuartil kedua = data ke-2 + 0,5 (data ke-3 – data ke-2)
= $Y_2 + 0,5(Y_3 - Y_2)$
= $Y_2 + 0,5Y_3 - 0,5Y_2$
= $0,5Y_2 + 0,5Y_3$

Dengan demikian diperoleh transformasinya dari Q_2 adalah $Q_2=0.5Y_2+0.5Y_3$. Karena transformasi yang diketahui berbentuk penjumlahan, maka dimisalkan transformasi keduanya berbentuk: $T=Y_2$.

Fungsi kepadatan peluang gabungan dari Y_2, Y_3 adalah

$$g_{2,3}(y_2, y_3) = \begin{cases} 24y_2(1 - y_3); & 0 < y_2 < y_3 < 1\\ 0; & \text{lainnya.} \end{cases}$$

Hubungan antara nila
i y_2 dari Y_2 dan nila
i y_3 dari Y_3 dengan nila
i q_2 dari Q_2 dan nila
itdari Tdiberikan dengan:

$$q_2 = 0.5 y_2 + 0.5 y_3$$
 dan $t = y_2$

Inversnya : $y_2 = t \operatorname{dan} y_3 = 0.5q_2 - t$

Jacobian:

$$J = \begin{vmatrix} \frac{\partial y_2}{\partial t} & \frac{\partial y_2}{\partial q_2} \\ \frac{\partial y_3}{\partial t} & \frac{\partial y_3}{\partial q_2} \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ -1 & 0.5 \end{vmatrix} = 0.5 \quad \text{maka } |J| = 0.5$$

Fungsi kepadatan peluang gabungan dari Q_2 dan T adalah:

$$h(q_2, t) = \begin{cases} 12t(1 - 0.5q_2 + t); & \text{untuk } 0 < t < 1, \ t < q < 0.25 + 0.75t \\ 0; & \text{lainnya.} \end{cases}$$

Fungsi kepadatan peluang marginal untuk Q_2 adalah:

$$h_1(q_2) = \begin{cases} \int_0^{0,25q_2} 12t(1-0.5q_2+t)dt = \frac{1}{8} \left(3q_2^2 - q_2^3\right); & 0 \le q_2 < 2\\ \int_{0,5(q_2-2)}^{0,25q_2} 12t(1-0.5q_2+t)dt = \frac{3}{4}q_2^4 - \frac{75}{16}q_2^3 + \frac{126}{144}q_2^2 - 6; & 2 < q_2 < 4\\ 0; & q_2 \text{ lainnya.} \end{cases}$$

3. Berdasarkan rumus kuartil, datanya merupakan data tunggal, maka:

letak kuartil ketiga = data ke-
$$\frac{3(4+1)}{4}$$

= data ke-3,75
nilai kuartil ketiga = data ke-3 + 0,75 (data ke-4 - data ke-3)
= $Y_3 + 0,75(Y_4 - Y_3)$
= $Y_3 + 0,75Y_4 - 0,75Y_3$
= $0.25Y_3 + 0.75Y_4$

Dengan demikian diperoleh transformasinya dari Q_3 adalah $Q_3=0,25Y_3+0,75Y_4$. Karena transformasi yang diketahui berbentuk penjumlahan, maka dimisalkan transformasi keduanya berbentuk: $T=Y_3$. Fungsi kepadatan peluang gabungan dari Y_3,Y_4 adalah:

$$g_{3,4}(y_3, y_4) = \begin{cases} 12 y_3^2, & 0 < y_3 < y_4 < 1\\ 0, & \text{lainnya.} \end{cases}$$

Hubungan antara nila
i y_3 dari Y_3 dan nila
i y_4 dari Y_4 dengan nila
i q_3 dari Q_3 dan nila
itdari Tdiberikan dengan:

$$q_3 = 0.25 y_3 + 0.75 y_4$$
 dan $t = y_3$

Inversnya : $y_3 = t$ dan $y_4 = \frac{4}{3}q_3 - \frac{1}{3}t$

Jacobian:

$$J = \begin{vmatrix} \frac{\partial y_3}{\partial t} & \frac{\partial y_3}{\partial q_3} \\ \frac{\partial y_4}{\partial t} & \frac{\partial y_4}{\partial q_3} \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ -\frac{1}{3} & \frac{4}{3} \end{vmatrix} = \frac{4}{3} \quad \text{maka } |J| = \frac{4}{3}$$

Fungsi kepadatan peluang gabungan dari Q_3 dan T adalah:

$$h(q_3, t) = \begin{cases} 16t^2; & \text{untuk } 0 < t < 1, \ t < q_3 < 0.75 + 0.25t \\ 0; & \text{lainnya.} \end{cases}$$

Fungsi kepadatan peluang marginal untuk Q_3 adalah:

$$h_3(q) = \begin{cases} \int_0^{q_3} 16t^2 dt = \frac{16}{3}q_3^3; & 0 \le q < 0.75 \\ \int_{4q_3-3}^{q_3} 16t^2 dt = -336q_3^3 + 768q_3^2 - 576q_3 + 144; & 0.75 < q < 1 \\ 0; & q_3 \text{ lainnya.} \end{cases}$$

4 SIMPHLAN

Penentuan fungsi kepadatan peluang dari kuartil kesatu (Q_1) berdasarkan statistik urutan dari sampel acak berukuran 4, $Y_1 < Y_2 < Y_3 < Y_4$ yang berasal dari populasi berdistribusi seragam S(0,1) dilakukan dengan menggunakan teknik transformasi peubah acak. Transformasi peubah acaknya: $Q_1=0.75\,Y_1+0.25\,Y_2$. Hasil akhir dari penelitian ini sebagai berikut: $h_1(q_1)=\frac{16}{3}\left[(1-q_1)^3-(1-4q_1)^3\right]\;\;;\;\;0\leq q_1<0.25; h_1(q_1)=\frac{16}{3}(1-q_1)^3\;\;;\;\;0.25< q_1<1\;{\rm dan}\;h_1(q_1)=0\;\;;\;\;{\rm untuk}\;q_1$ lainnya. Penentuan fungsi kepadatan peluang dari kuartil kedua (Q_2) berdasarkan statistik urutan dari sampel acak berukuran 4, $Y_1 < Y_2 < Y_3 < Y_4$ yang berasal dari populasi berdistribusi seragam S(0,1) dilakukan dengan menggunakan teknik transformasi peubah acak
n geubah acaknya: $Q_2=0.5\,Y_2+0.5\,Y_3$. Hasil akhir dari penelitian ini sebagai berikut: $h_1(q_2) = \frac{1}{8}(3q_2^2 - q_2^3)$; $0 \le q_2 < 2$; $h_1(q_2) = \frac{3}{4}q_2^4 - \frac{75}{16}q_2^3 + \frac{126}{144}q_2^2 - 6$; $2 < q_2 < 4$; dan $h_1(q_2) = 0$; untuk q_2 lainnya. Penentuan fungsi kepadatan peluang dari kuartil ketiga (Q_3) berdasarkan statistik urutan dari sampel acak berukuran 4, $Y_1 < Y_2 < Y_3 < Y_4$ yang berasal dari populasi berdistribusi seragam S(0,1) dilakukan dengan menggunakan teknik transformasi peubah acak. Transformasi peubah acaknya: $Q_3 = 0.25 \, Y_3 + 0.75 \, Y_4$. Hasil akhir dari penelitian ini sebagai berikut : $h_1(q_3) = \frac{16}{3} q_3^3$ untuk $0 \le q_3 < 0.75$; $h_1(q_3) = -336 q_3^3 + 768 q_3^2 - 576 q_3 + 144$ untuk $0.75 < q_3 < 1$; dan $h_1(q_3) = 0$ untuk q_3 laippyya. Batasan dalam panelitian ini sebagai berikut : $h_1(q_3) = 0$ untuk q_3 lainnya. Batasan dalam penelitian ini adalah parameter dari distribusi seragam dan ukuran sampelnya harus tertentu. Implikasi teoritis dari artikel ini adalah penggunaan teknik transformasi peubah acak secara teoritis dalam penentuan fungsi kepadatan peluang dari fungsi peubah acak. Rekomendasi untuk penelitian lanjutan adalah menentukan distribusi kuartil berdasarkan statistik urutan berdasarkan sampel acak berukuran tertentu yang berdistribusi seragam secara umum.

Daftar Pustaka

- Padang, Y., Abdunnur, Syahrir R., M., Analisis Kuartil, Desil dan Persentil pada Ukuran Panjang Udang Bintik Coklat (Metapenaeus demani) di Perairan Muara Ilu Kabupaten Kutai Kartanegara, 2023, Tropical Aquatic Sciences, Vol. 2(1):44-50.
- [2] Sitorus, F.F., Aulia, D.M., Anggraini, F., Putri, A.A., Chairunnisa, P., Haryana, N.R., Hubungan Pengetahuan tentang Tingkat Kecukupan Gizi dan Perilaku Pemberian Makanan Ibu dengan Kejadian Stunting pada Bayi di Medan Belawan, Jurnal Ilmiah Wahana Pendidikan, Februari 2025, 11 (2.C), 140-150.
- Nazir, M. Metode Penelitian. Jakarta: Penerbit Ghalia Indonesia, 1985.
- [4] Herrhyanto, N. and Gantini, T., Analisis Data Kuantitatif dengan Statistika Deskriptif. Bandung: Penerbit Yrama Widya, 2015.
- [5] Sudjana, Metoda Statistika, 6th ed. Bandung: TARSITO, 1996.
- [6] Hogg, Robert V. & Tanis, E.A. Probability & Statistical Inference. Collier Ma. Canada: Collier Macmillan Canada, Ltd, 1977.
- [7] Dudewicz, Edward J. & Mishra, S.N. Modern Mathematical Statistics. Wiley Series in Probability and Mathematical Statistics. Canada: John Wiley & Sons, Inc., 1988.
- [8] Rohatgi, V.K., An Introduction to Probability Theory and Mathematical Statistics. Canada: John Wiley & Sons, Inc., 1976.
- [9] Hogg, Robert V. & Craig, A.T., Introduction to Mathematical Statistics, Fifth Edit. New Jersey: Prentice Hall International Inc., Englewood Cliffs, 07632, 1995.
- [10] Wackerly, Dennis D.; Mendenhall III, William; & Scheaffer, R.L., Mathematical Statistics with Applications, 5th ed. Wadsworth Publishing Company. A Division of International Thomson Publishing Inc., 1996.
- [11] Herrhyanto, N., Statistika Inferensial Secara Teoretis. Bandung: Yrama Widya, 2013.