Available online at http://jurnal.unpad.ac.id/jurnalilmuternak

STUDY OF THE IMPLEMENTATION OF HEALTH MANAGEMENT FOR PIG BREEDING IN CV ROKU, MANGGARAI, NUSA TENGGARA TIMUR

Korbinianus Feribertus Rinca^{1,a}, Roselin Gultom¹, Maria Tarsisia Luju¹, Yohana Maria Febrizki Bollyn¹, Puspita Cahya Achmadi¹, Wigbertus Gaut Utama¹

¹Animal Husbandry Study Program, Faculty Agriculture and Animal Husbandry, Indonesian Catholic University Saint Paul Ruteng

^aemail: erbinrincadosen@gmail.com

Abstract

The application of health management is a determining factor for the success of a pig farm business. This research was conducted to observe the pig health management in CV. Roku, Manggarai, NTT. The data used in this research was secondary data, reconfirmed to the owner using the direct interview method using questionnaires, andthen analyzed descriptively. The practice of health management studied was the application of medication, biosecurity, and vaccination to gilts, sows, and piglets. The results of the study showed that the treatment of gilts reared on the farm was in the form of giving antibiotics, vitamins, and anthelmintics; medical measures performed on sows after giving birth in the form of giving antibiotics, vitamins, and anti-inflammatories while medical measures for sows after weaning are in the form of vitamins and antibiotics; as well as medical measures for piglets reared in the farm in the form of iron (Fe), vitamins, and antibiotics. The results of this study could be concluded that CV. Roku has not properly implemented pig health management, as evidenced by CV. Roku only applies medication but didn't apply biosecurity and vaccination at all to gilts, sows, and piglets in health management.

Keywords: health management, implementation, pig breeding

KAJIAN IMPLEMENTASI MANAJEMEN KESEHATAN PETERNAKAN BABI DI CV ROKU, MANGGARAI, NUSA TENGGARA TIMUR

Abstrak

Penelitian ini dilakukan untuk mengetahui manajemen kesehatan babi di CV. Roku, Manggarai, NTT. Data yang digunakan dalam penelitian ini adalah data sekunder, dikonfirmasi kembali kepada pemilik dengan menggunakan metode wawancara langsung dengan menggunakan kuesioner, kemudian dianalisis secara deskriptif. Praktik manajemen kesehatan yang diteliti adalah penerapan pengobatan, biosekuriti, dan vaksinasi pada dara, induk, dan anak babi. Hasil penelitian menunjukkan bahwa perlakuan terhadap babi dara yang dipelihara di peternakan berupa pemberian antibiotik, vitamin, dan obat cacing, tindakan medis yang dilakukan pada induk babi setelah melahirkan berupa pemberian antibiotik, vitamin, dan obat antiradang, sedangkan tindakan medis pada induk babi setelah sapih berupa vitamin dan antibiotik, dan upaya pengobatan terhadap anak babi yang dipelihara di peternakan berupa pemberian zat besi (Fe), vitamin, dan antibiotik. Hasil penelitian ini dapat disimpulkan bahwa CV. Roku belum menerapkan manajemen kesehatan babi dengan baik, terbukti dari CV. Roku hanya menerapkan pengobatan tetapi tidak menerapkan biosekuriti dan vaksinasi sama sekali pada dara, induk, dan anak babi dalam pengelolaan kesehatan.

Kata Kunci: manajemen kesehatan, implementasi, peternakan babi

INTRODUCTION

Pigs are a popular livestock choice for farming households in East Nusa Tenggara, as they offer high business potential and economic viability (Ballo & Lalus, 2021). Pig are known for their high production, fast growth, and adaptability to various feeds (Alionye, et al., 2020). Piggeries have been reported to increase farmers' income and

contribute to poverty alleviation (Matialo et al., 2020).

However, pigs farming in East Nusa Tenggara, especially Manggarai Regency, faces many health problems, primarily related to infectious and non-infectious diseases (Rahayu, 2014). These diseases, caused by viruses, bacteria, parasites, and fungi (Suratma et al., 2016), are exacerbated by conventional

rearing systems with poor health management practices (Bulu et al., 2019). Pig breeders must be able to improve health management, because they play an important role in disease control (Rajesh et al., 2019). However, those farmers often lack knowledge about effective health management (Dione et al., 2014), which leads to a decline in pigs product quality and productivity, and pose major socioeconomic consequences for the farmers (Beltran-Alcrudo et al., 2019).

To address these challenges, the research focused on understanding how pig farmer in Manggarai, implements health management practices, considering aspects such as disease prevention, vaccination, medication, and vitamin supplementation (Sapanca et al., 2015). Improving pig health management is a key factor in increasing pig production, as researches have shown a direct correlation between health status and overall productivity (Racewicz et al., 2021; Rodrigues da Costa et al., 2020). This research was conducted at CV. Roku, the first commercial swine breeding farm in Manggarai, East Nusa Tenggara, to provide broader understanding of health management practices in pig farming, such as medication, biosecurity, and vaccination, and to serve as a reference for the farm to improve its health management strategies.

MATERIALS AND METHODS

This research was conducted at CV Roku's pig farm in Benteng Suru, Ruteng District, Manggarai Regency. This research was conducted during one production cycle, or 4 months (starting from December 2022 to April 2023). This study used pigs from

different production period and various ages. This study used gilts aged 3, 5, and 7 months (6, 3, and 5 gilts, respectively), sows aged 2, 3, 5, and 7 years old (5, 4, 7, and 3 sows, respectively), and piglets aged 3, 14, and 45 days (85, 72, and 72 piglets, respectively). The piglets were born from 12 sows, consisting of 70 piglets aged 1 days old from sows aged 2 years old; 85 piglets aged 3 days old from sows aged 3 years old; 72 piglets aged 14 days old from sows aged 3 years old, and 67 piglets aged 35 days old from sows aged 5 years old.

This study used secondary data on health management practices, including medication, biosecurity, and vaccination. Direct interviews with breeders were conducted to confirm the implementation of health management practices. The standard health management practices, including vaccination, biosecurity, and treatment, constitute essential steps in effectively preventing diseases in livestock (Bonfanti et al., 2014). The medications studied included Iron (Fe), antibiotics, and vitamins, anthelmintics, antiinflammatories. The biosecurity included quarantine cages for sick pigs and pens disinfection. The vaccinations included the administration of Hog cholera and Septicaemia epizootica vaccines. The data was then analyzed descriptively.

RESULTS AND DISCUSSION

Health Management of Gilts

Gilts health management that was implemented by CV. Roku, in Benteng Suru Village, Ruteng District, Manggarai Regency, is presented in Table 1 below.

Table 1. Implementation of gilts health management

	Number of gilts	Medication					
Age		Iron (Intrafer 200®)	Antibiotic (Limoxin- 200 LA)	Vitamin (Injectamin®)	Anthelmintics (Nemasol kaplet®)	Anti- inflammatory	
3 months	6	No	No	No	No	No	
5 months	3	No	No	No	No	No	
7 months	5	No	Yes	Yes	Yes	No	

Age	Number of gilts	Bi	osecurity	Vaccination		
		Isolation caged	Disinfection of stables	Hog Cholera	Septicaemia Epizootica (SE)	
3 months	6	No	No	No	No	
5 months	3	No	No	No	No	
7 months	5	No	No	No	No	

(Source: CV. Roku, 2023)

Health management applied to the gilts in CV. Roku included antibiotics and vitamins administration simultaneously. Anthelmintics are given 7 days after antibiotics and vitamins administration. The farmers administered antibiotics to prevent pathogenic bacteria from infecting the reproductive tract before the gilts become pregnant (Zamojska et al., 2021). The use of antibiotics in sows is also reported to prevent reproductive diseases (Van Rennings et al., 2015). Other studies have reported that an antibiotic-free strategy in pig farms can lead to reinfection, while proper and judicious use of antibiotics in diseases caused by porcine reproductive and respiratory syndrome viruses can enhance the reproductive health of pigs (Dee et al., 2018).

Gilts were given vitamins to maintain their overall health and reproductive tract being mated. Vitamin health before supplementation plays a crucial role in maintaining overall health and reproductive health in pigs (Vijayalakshmy et al., 2018). Giving vitamins to broodstock also aims to support the quality of mother's milk. Vitamins E and C were reported to have positive effects on sow's milk and colostrum during gestation (Sosnowska et al., 2011). Other studies report positive effects of vitamin A on reproductive physiology and fetal development (Marantidis et al., 2016).

The administration of anthelmintics to gilts aims to prevent the transmission of helminths before they become pregnant. This preventive measure is crucial in reducing the worm infection rate in pigs (Kouam et al., is 2018). Deworming considered for fundamental practice controlling endoparasites, and it helps prevent sows from becoming a source of worm infection in piglets (Jankowska-Mąkosa et al., 2023).

Health Management for Sows

Sows health management that was implemented by CV. Roku, in Benteng Suru Village, Ruteng District, Manggarai Regency, is presented in Table 2. The health management in sows included vitamins, anti-inflammatories, and antibiotics administration simultaneously after parturition. Sows that have weaned piglets are given antibiotics and vitamins. Vitamins were supplemented to

sows after weaning to support reproduction and production in the next gestation period. Previous research reported that vitamins are a determinant in increasing production and reproductive performance (Ovchinnikov et al., 2021).

The administration of Vitamins E and C to pregnant and lactating sows, and vitamin D3 to lactating sows resulted in higher serum antibody concentrations in piglets weaned at 21 days old (Konowalchuk et al., 2013). Previous studies reported that crossbreeding of Yorkshire and Landrace, duration of labor (117.2±47.3 minutes, ranging from 28 to 383 minutes), and the type of antiinflammatory drugs can influence incidence of postpartum disorders in sow. Other studies report that postpartum care, such as antibiotics and anti-inflammatory drugs (Nam et al., 2022), helps reduce pain and the laying time of sows after giving birth, and provide analgesic effect on piglets (Mainau et al., 2012).

Primiparous sows are at a higher risk of developing postpartum illness than multiparous sows. Previous studies have reported that sows with a long duration of partum (4-8 hours) are at risk of experiencing fever within one day after giving birth and anti-inflammatory administration is helpful in minimizing clinical symptoms of postpartum disorders in sows (Tummaruk & Sang-Gassanee, 2013). Oral administration of anti-inflammatory at the beginning farrowing in multiparous sows can increase the concentration of immunoglobins and cytokines in pig colostrum (Navarro et al., 2021).

Antibiotics are given to sows after weaning to improve their conditions during suckling period of piglets. Previous studies have reported that this practice play an important role in increasing body weight and improving feed efficiency for weaning (Bohrer et al., 2019; Marszałek et al., 2019; Rasschaert et al., 2020). Administering antibiotics to postweaning sows by injection aims to prevent reproductive disorders (Yang et al., 2019) and diseases, such as gastrointestinal diseases, laminitis, and postnatal infections (Bosman et al., 2022).

Table 2. Implementation of sow health management

	Number of sows	Time of _ Medication Administration	Medication						
Age			Iron (Intrafer 200®)	Antibiotic (Limoxin- 200 LA)	Vitamin (Injectamin®)	Anthelmintics (Nemasol kaplet®)	Anti- inflammatory		
2 years	5	Post-Partum	No	Yes	Yes	No	Yes		
3 years	4	Lactation	No	No	No	No	No		
5 years	7	Weaning	No	Yes	Yes	No	No		
7 years	3	Dry Period	No	No	No	No	No		

Δσρ		Time of Medication Administration		Biosecurity		Vaccination	
	Number of sows		Isolation caged	Disinfection of stables	Hog Cholera	Septicaemia Epizootica (SE)	
2 years	5	Post-Partum	No	No	No	No	
3 years	4	Lactation	No	No	No	No	
5 years	7	Weaning	No	No	No	No	
7 years	3	Dry Period	No	No	No	No	

(Source: CV. Roku, 2023)

Health Management of Piglets

Piglets health management that was implemented by CV. Roku, in Benteng Suru Village, Ruteng District, Manggarai Regency, is presented in Table 3. The health management applied included in CV Roku were the administration of Fe to piglets that were 3 days old, simultaneous Fe and antibiotics administration to piglets that were 14 days old, and simultaneous Fe, antibiotics, and vitamins administration to piglets that were 35 days old. Fe, antibiotics and vitamins applied parenterally. are Iron supplementation for piglets is reported as a routine activity and must be carried out with different routes and doses according to the schedule of each pig farm (Svoboda et al., 2017). Giving iron (Fe) by intramuscular injection within 2-3 days after birth was routinely practiced in pig farms and was generally considered by farmers veterinarians as the ema standard for the prevention/treatment of iron (Fe) deficiency anemia in suckling pigs (Svoboda & Píšťková, 2018). Iron (Fe) injection to newborn piglets was necessary because pregnant sows cannot provide sufficient amounts of iron (Fe) for the developing fetus (Szudzik et al., 2018).

Iron (Fe) supplementation for piglets aged 35 days aimed to prevent post-weaning anemia. Previous research reported that giving 150-20 mg of iron (Fe) at birth was only able to prevent iron deficiency for 21 days and with a single dose could not prevent anemia for more than 21 days after birth (Williams et al., 2020; Lindemann et al., 2021). Another study reported that suckling pigs grow rapidly and

have about 4 times greater body weight at weaning than at birth resulting in a greater susceptibility to iron deficiency anemia at weaning (Estienne et al., 2020; Jolliff & Mahan, 2011). Perri et al., (2016) reported that larger piglets at weaning had lower indicators of red blood cells and serum iron than smaller piglets. Bhattarai & Nielsen (2015) found out that larger weaning piglets had lower serum iron and total iron binding capacity, which made them susceptible to iron deficiency.

Antibiotics were administrated at CV Roku from the age of 14 to 35 days. The results of this research are consistent with the previous study, wherein farmers administered 50% penicillin, 26.5% oxytetracycline and sulfadimethypyrimidine, 23.5% amoxicillin, and 12.5% used other types of antibiotics (Arief et al., 2016). The study also reported that giving antibiotics to piglets aims to prevent diarrhea caused by enterotoxigenic *Escherichia coli* (ETEC) which occurs in piglets starting at 1-4 days of age, piglets 2-3 weeks after weaning with peak diarrhea occurring at 6-8 weeks. post weaning, and even at 12 weeks (Hartadi et al., 2020).

Vitamins is reported to function in normal metabolism and co-factor in the metabolic reactions of the body of pigs (Bulu et al., 2019). Vitamins A, D, and E, are injected into piglets at the age of 20 and 40 days (Lima et al., 2012). Previous research reported that there was a positive effect of giving vitamins on the early growth of piglets for breeding purposes (Santos et al., 2020).

Table 3. Implementation of piglet health management

	N	Medication						
Age	Number of gilts	Iron (Intrafer 200®)	Antibiotic (Limoxin- 200 LA)	Vitamin (Injectamin®)	Anthelmintics (Nemasol kaplet®)	Anti- inflammatory		
1 days	70	No	No	No	No	No		
3 days	85	Yes	No	No	No	No		
14 days	72	Yes	Yes	No	No	No		
35 days	67	Yes	Yes	Yes	No	No		

	Number of gilts	Bi	osecurity	Vaccination		
Age		Isolation caged	Disinfection of stables	Hog Cholera	Septicaemia Epizootica (SE)	
1 days	70	No	No	No	No	
3 days	85	No	No	No	No	
14 days	72	No	No	No	No	
35 days	67	No	No	No	No	

(Source: CV. Roku, 2023)

Another study reported that giving vitamin D3 significantly increased cellular and humoral immunity in piglets between 21 and 69 days of age (Konowalchuk et al., 2013).

CONCLUSIONS

Health management of breeding pigs studied at CV. Roku Ruteng, Manggarai, NTT was the application of medication, biosecurity, and vaccination. The results of the research showed that CV. Roku Ruteng, Manggarai, NTT; only applied the medication variables under study but didn't implement biosecurity and vaccination at all for gilts, sows, and piglets. This could be seen from the gilts kept on the farm only giving antibiotics, vitamins, and anthelmintics to pigs kept as medication. Furthermore, after the sows gave birth were only given antibiotics, vitamins, and antiinflammatories; while the weaning sows were given vitamins and antibiotics as medication. In addition, the piglets raised on the farm are only given Iron (Fe), vitamins, and antibiotics. Based on the results of this study, the following recommendations could be given: (1) the management in CV. Roku needs to improve pig health management, (2) implemented biosecurity measures and vaccinations to prevent the disease from occurring in the pigs they keep; (3) this study didn't just identify the implementation of health management but needs to examine further the reasons for CV. Roku only gave medication to the pigs that were reared.

ACKNOWLEDGMENT

We express our thanks to CV. Roku for agreeing to be the research site for this study.

REFERENCES

Alionye, E. B., Ahaotu, E., Ihenacho, R. O., & Chukwu, A. O. (2020). Comparative Evaluation of Swine Production With Other Domestic Livestock in Mbaitolu Local Government Area of Imo State, Nigeria. Sustainability, Agri, Food and Environmental Research, 8(3), 212–234. https://doi.org/10.7770/safer-v0n0-art1990

Arief, R. A., Darmawan, R. D., Sunandar, M. D. W., Widyastuti, E. N., Jatikusumah, A., & Putra, A. A. G. (2016). Penggunaan Antibiotik pada Peternakan Babi di Provinsi Jawa Tengah, Indonesia. *Prosiding KIVNAS Ke-14. ICE-BSD City. Tangerang*, 161–250. https://doi.org/10.3201/eid1312.070384.1 62

Ballo, V. J., & Lalus, M. F. (2021). Analysis Marketing Of Life Fattening Pig in Kupang Regency, East Nusa Tenggara. *Jurnal Peternakan Lahan Kering*, *3*(3), 182–184.

Beltran-Alcrudo, D., Falco, J. R., Raizman, E., & Dietze, K. (2019). Transboundary spread of pig diseases: The role of international trade and travel. *BMC Veterinary Research*, *15*(1), 1–14. https://doi.org/10.1186/s12917-019-1800-5

- Bhattarai, S., & Nielsen, J. P. (2015). Early indicators of iron deficiency in large piglets at weaning. *Journal of Swine Health and Production*, 23(1), 10–17.
- Bohrer, R. E. G., Carissimi, E., Lopez, D. A. R., Wolff, D. B., Da Silva, D. M., & Prestes, O. D. (2019). Composting of swine waste in the treatment of veterinary drug residues. *Semina: Ciencias Agrarias*, 40(6), 2813–2830. https://doi.org/10.5433/1679-0359.2019v40n6p2813
- Bonfanti, L., Natale, A., & Comin, A. (2014). Application of an integrated outbreak management plan for the control of leptospirosis in dairy cattle herds. *Epidemiology and Infection*, *142*, 1172–1181.
 - https://doi.org/10.1017/S0950268813001817
- Bosman, A. L., Deckert, A. E., Carson, C. A., Poljak, Z., Reid-Smith, R. J., & McEwen, S. A. (2022). Antimicrobial use in lactating sows, piglets, nursery, and grower-finisher pigs on swine farms in Ontario, Canada during 2017 and 2018. *Porcine Health Management*, 8(1), 1–20. https://doi.org/10.1186/s40813-022-00259-w
- Bulu, P. M., Wera, E., & Yuliani, N. S. (2019).

 Manajemen Kesehatan Pada Ternak Babi di Kelompok Tani Sehati Kelurahan Tuatuka, Kecamatan Kupang Timur, Kabupaten Kupang NTT. *Jurnal Pengabdian Masyarakat Peternakan*, 4(2), 164–176.

 https://doi.org/10.35726/jpmp.v4i2.344
- Dee, S., Guzman, J. E., Hanson, D., Garbes, N., Morrison, R., Amodie, D., & Pantoja, L. G. (2018). A randomized controlled trial to evaluate performance of pigs raised in antibiotic-free or conventional production systems following challenge with porcine reproductive and respiratory syndrome virus. *PLoS ONE*, *13*(12), 1–15.
- Dione, M. M., Ouma, E. A., Roesel, K., Kungu, J., Lule, P., & Pezo, D. (2014). Participatory assessment of animal health and husbandry practices in smallholder pig production systems in three high poverty districts in Uganda. *Preventive Veterinary Medicine*, 117(3–4), 565–576.

https://doi.org/10.1371/journal.pone.0208430

- https://doi.org/10.1016/j.prevetmed.2014. 10.012
- Estienne, M. J., ClarkDeener, S. G., & Williams, K. A. (2020). Growth performance and hematology characteristics in pigs treated with iron at weaning as influenced by nursery diets supplemented with copper. *Journal of Swine Health and Production*, 28(4), 190–203.
- Hartadi, E. B., Effendi, M. H., Plumeriastuti, H., Sofiana, E. D., Wibisono, F. M., & Hidayatullah, A. R. (2020). A review of enterotoxigenic Escherichia coli infection in piglets: Public health importance. *Systematic Reviews in Pharmacy*, 11(9), 687–698.
 - https://doi.org/10.31838/srp.2020.9.100
- Jankowska-Mąkosa, A., Knecht, D., Wyrembak, S., & Zwyrzykowska-Wodzińska, A. (2023). Evaluation of the Level of Parasites Infection in Pigs as an Element of Sustainable Pig Production. *Sustainability (Switzerland)*, 15(4), 1–10. https://doi.org/10.3390/su15043671
- Jolliff, J. S., & Mahan, D. C. (2011). Effect of injected and dietary iron in young pigs on blood hematology and postnatal pig growth performance. *Journal of Animal Science*, 89(12), 4068–4080. https://doi.org/10.2527/jas.2010-3736
- Konowalchuk, J. D., Rieger, A. M., Kiemele, M. D., Ayres, D. C., & Barreda, D. R. (2013). Modulation of weanling pig cellular immunity in response to diet supplementation with 25-hydroxyvitamin D3. *Veterinary Immunology and Immunopathology*, 155(1–2), 57–66. https://doi.org/10.1016/j.vetimm.2013.06. 002
- Kouam, M. K., Ngueguim, F. D., & Kantzoura, V. (2018). Internal Parasites of Pigs and Worm Control Practices in Bamboutos, Western Highlands of Cameroon. *Journal of Parasitology Research*, 1–9. https://doi.org/10.1155/2018/8242486
- Lima, A. S., Weigel, R. A., Morgado, A. A.,Nunes, G. R., Souza, F. N., Moreno, A.M., Libera, A. M. M. P. D., & Sucupira,M. C. A. (2012).Parenteral administration of vitamins A,

- D and E on the oxidative metabolism and function of polymorphonuclear leukocytes in swine. *Pesquisa Veterinaria Brasileira*, *32*(8), 727–734. https://doi.org/10.1590/S0100-736X2012000800008
- Lindemann, M. D., Chevalier, T. B., & Monegue, ; H James. (2021). Effects of iron dosage administered to newborn piglets on hematological measures, preweaning and postweaning growth performance, and postweaning tissue mineral content. *Journal of Swine Health and Production*, 29(4), 189–199. http://www.aasv.org/shap.html.
- Mainau, E., Ruiz-De-La-Torre, J. L., Dalmau, A., Salleras, J. M., & Manteca, X. (2012). Effects of meloxicam (Metacam®) on post-farrowing sow behaviour and piglet performance. *Animal*, *6*(3), 494–501. https://doi.org/10.1017/S1751731111001790
- Marantidis, A., Laliotis, G. P., & Avdi, M. (2016). Association of RBP4 genotype with phenotypic reproductive traits of sows. *Genetics Research International*, 1–5.
 - https://doi.org/10.1155/2016/4940532
- Marszałek, M., Kowalski, Z., & Makara, A. (2019). The Possibility of Contamination of Water-Soil Environment as a Result of the Use of Pig Slurry. *Ecological Chemistry and Engineering S*, 26(2), 313–330.
 - https://doi.org/10.1515/eces-2019-0022
- Matialo, C. C., Elly, F. H., Dalie, S., & Rorimpandey, B. (2020). Pengaruh Biaya Pakan Terhadap Keuntungan Peternak Babi di Desa Werdhi Agung Kecamatan Dumoga Barat. *Zootec*, 40(2), 724–734. https://doi.org/10.35792/zot.40.2.2020.30 194
- Nam, N. H., Dao, B. T. A., & Sukon, P. (2022). Prediction of Postpartum Vaginal Discharge Duration in Sows. *World's Veterinary Journal*, *12*(1), 60–65. https://doi.org/10.54203/scil.2022.wvj8
- Navarro, E., Mainau, E., de Miguel, R., Temple, D., Salas, M., & Manteca, X. (2021). Oral Meloxicam Administration in Sows at Farrowing and Its Effects on Piglet Immunity Transfer and Growth. Frontiers in Veterinary Science, 1–10.

- https://doi.org/10.3389/fvets.2021.574250
- Ovchinnikov, A. A., Ovchinnikova, L. Y., & Matrosova, Y. V. (2021). Reproductive functions of sows under the influence of vitamin-mineral supplement in the diet. *E3S Web of Conferences*, 282. https://doi.org/10.1051/e3sconf/20212820 4001
- Perri, A. M., Friendship, R. M., Harding, J. C. S., & O'Sullivan, T. L. (2016). An investigation of iron deficiency and anemia in piglets and the effect of iron status at weaning on post-weaning performance. *Journal of Swine Health and Production*, 24(1), 10–20.
- Racewicz, P., Ludwiczak, A., Skrzypczak, E., Składanowska-Baryza, J., Biesiada, H., Nowak, T., Nowaczewski, S., Zaborowicz, M., Stanisz, M., & Ślósarz, P. (2021). Welfare health and productivity in commercial pig herds. *Animals*, *11*(4), 1–15.
 - https://doi.org/10.3390/ani11041176
- Rahayu, T. D. (2014). Identifikasi penyakit pada pedet perah pra-sapih di peternakan rakyat dan perusahaan peternakan. *Jurnal Gamma*, *9*(2), 40–49.
- Rajesh, J., Rajkhowa, S., Dimri, U., Prasad, H., Chethan, G., & Zosangpuii. (2019). Health related management practices at pig farms of north east India. *Journal of AgriSearch*, 6(1), 60–63. https://doi.org/10.21921/jas.v6i1.14923
- Rasschaert, G., Van Elst, D., Colson, L., Herman, L., Ferreira, H. C. de C., Dewulf, J., Decrop, J., Meirlaen, J., Heyndrickx, M., & Daeseleire, E. (2020). Antibiotic residues and antibiotic-resistant bacteria in pig slurry used to fertilize agricultural fields. *Antibiotics*, 9(1), 1–15. https://doi.org/10.3390/antibiotics9010034
- Rodrigues da Costa, M., Rovira, A., Fitzgerald, R. M., Gasa, J., Shea, H., & Manzanilla, E. G. (2020). Estimating the Effect of Respiratory Disease on Production Performance in Farrow-to-Finish Pig Farms. *Research Square*, 1–16.
- Santos, R. K. S., Novais, A. K., Borges, D. S.,
 Alves, J. B., Dario, J. G. N., Frederico,
 G., Pierozan, C. R., Batista, J. P., Pereira,
 M., & Silva, C. A. (2020). Increased
 vitamin supplement to sows, piglets and

- finishers and the effect in productivity. *Animal*, *14*(1), 86–94. https://doi.org/10.1017/S1751731119001927
- Sapanca, P. L. Y., Cipta, I. W., Suryana, I. M., & Staff. (2015). Peningkatan Manajemen Kelompok Ternak Babi Di Kabupaten Bangli. Agrimeta: Jurnal Pertanian Berbasis Keseimbangan Ekosistem, 5(9), 18–25.
 - http://jurnal.unmas.ac.id/index.php/agrimeta/article/view/92/69
- Sosnowska, A., Kawecka, M., Jacyno, E., Kołodziej-Skalska, A., Kamyczek, M., & Matysiak, B. (2011). Effect of dietary vitamins E and C supplementation on performance of sows and piglets. *Acta Agriculturae Scandinavica A: Animal Sciences*, 61(4), 196–203. https://doi.org/10.1080/09064702.2012.66
- Suratma, N. A., Dwinta, I. M., Mubarok, F., & Alamsyah, A. N. (2016). Prevalence of Gastrointestinal Tract Worms in Bali Cattle at Bali Cattle Breeding Center, Sobangan, Badung. Proceedings of International Seminar on Livestock Production and Veterinary Technology 2016 Regency, 153–155. https://doi.org/10.14334/proc.intsem.lpvt-
- Svoboda, M., & Píšťková, K. (2018). Oral iron administration in suckling piglets a review. *Acta Veterinaria Brno*, 87(1), 77–83.

2016-p.153-155

- https://doi.org/10.2754/avb201887010077
- Svoboda, M., Vaňhara, J., & Berlinská, J. (2017). Parenteral iron administration in suckling piglets A review. *Acta Veterinaria Brno*, 86(3), 249–261. https://doi.org/10.2754/avb201786030249
- Szudzik, M., Starzyński, R. R., Jończy, A., Mazgaj, R., Lenartowicz, M., & Lipiński, P. (2018). Iron supplementation in suckling piglets: An ostensibly easy therapy of neonatal iron deficiency anemia. *Pharmaceuticals*, *1*–*13*. https://doi.org/10.3390/ph11040128
- Tummaruk, P. (2013). Post-parturient disorders and backfat loss in tropical sows in relation to backfat thickness before farrowing and postpartum intravenous supportive treatment. *Asian-Australasian Journal of Animal Sciences*, 26(2), 171–

- 177. https://doi.org/10.5713/ajas.2012.12478
- Tummaruk, P., & Sang-Gassanee, K. (2013). Effect of farrowing duration, parity number and the type of anti-inflammatory drug on postparturient disorders in sows: A clinical study. *Tropical Animal Health and Production*, 45(4), 1071–1077. https://doi.org/10.1007/s11250-012-0315-x
- Van Rennings, L., Von Münchhausen, C., Ottilie, H., Hartmann, M., Merle, R., Honscha, W., Käsbohrer, A., & Kreienbrock, L. (2015). Cross-sectional study on antibiotic usage in pigs in Germany. *PLoS ONE*, *10*(3), 1–28. https://doi.org/10.1371/journal.pone.0119
- Vijayalakshmy, K., Virmani, M., Malik, R., Rajalakshmi, K., & Kasthuri, S. (2018). The Role of B Vitamins in Livestock Nutrition. *Journal of Veterinary Medicine and Research*, 5(10), 1162–1165.
- Williams, H. E., DeRouchey, J. M., Woodworth, J. C., Dritz, S. S., Tokach, M. D., Goodband, R. D., Holtcamp, A. J., Bortoluzzi, E. M., & Gebhardt, J. T. (2020). Effects of increasing Fe dosage in newborn pigs on suckling and subsequent nursery performance and hematological and immunological criteria. *Journal of Animal Science*, 98(8), 1–10. https://doi.org/10.1093/jas/skaa221
- Yang, H., Paruch, L., Chen, X., van Eerde, A., Skomedal, H., Wang, Y., Liu, D., & Clarke, J. L. (2019). Antibiotic application and resistance in swine production in China: Current situation and future perspectives. *Frontiers in Veterinary Science*, 1–8. https://doi.org/10.3389/fvets.2019.00136
- Zamojska, D., Nowak, A., Nowak, I., & Macierzyńska-Piotrowska, E. (2021). Probiotics and postbiotics as substitutes of antibiotics in farm animals: A review. *Animals*, 11(12), 1–20. https://doi.org/10.3390/ani11123431