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Abstract 

One of the major challenges in ruminant production in Indonesia is ensuring the availability of high-quality and 

adequate forage. Identifying forage varieties with good nutritive value that adapt well to local climate conditions is 

crucial. This study evaluated the nutrient composition, fiber fractions, and in vitro rumen fermentation of Mulato grass 

harvested at different cutting ages (30, 40, and 50 days) in the lowlands of West Java, Indonesia. The nutrient content, 

analyzed using proximate and fiber fraction analysis, showed no significant differences across cutting ages except for 

ash content, which was lower at 40 days. Mulato grass cut at 30 days had lower acid detergent fiber (ADF), neutral 

detergent fiber (NDF), acid detergent lignin (ADL), and hemicellulose levels, while its cellulose content was higher 

compared to grass cut at 40 or 50 days. Rumen fermentation results indicated that grass cut at 30 days had higher in 

vitro dry matter digestibility (IVDMD), organic matter digestibility (IVOMD), and total volatile fatty acids (TVFA). 

These findings suggest that Mulato grass harvested at 30 days offers better digestibility and rumen fermentation 

outcomes, making it a suitable forage choice for ruminants in the lowlands of West Java, Indonesia. 

Keywords: fiber fraction, in vitro characteristics, mulato grass, nutrient content. 

KANDUNGAN GIZI, FRAKSI SERAT, DAN FERMENTASI RUMEN SECARA 

IN VITRO PADA RUMPUT MULATO YANG DITANAM DENGAN USIA 

POTONGAN YANG BERBEDA DI DATARAN RENDAH JAWA BARAT, 

INDONESIA 

Abstrak 

Salah satu tantangan utama dalam produksi ruminansia di Indonesia adalah memastikan ketersediaan pakan 

hijauan yang berkualitas tinggi dan memadai. Identifikasi varietas hijauan dengan nilai nutrien yang baik dan 

kemampuan adaptasi yang optimal terhadap kondisi iklim lokal sangatlah penting. Penelitian ini mengevaluasi 

komposisi nutrien, fraksi serat, dan fermentasi rumen secara in vitro dari rumput Mulato yang dipanen pada umur 

potong berbeda (30, 40, dan 50 hari) di dataran rendah Jawa Barat, Indonesia. Analisis komposisi nutrien yang 

dilakukan melalui analisis proksimat dan fraksi serat menunjukkan tidak adanya perbedaan signifikan pada umur 

potong kecuali pada kandungan abu, yang lebih rendah pada umur potong 40 hari. Rumput Mulato yang dipanen 

pada umur 30 hari memiliki kadar acid detergent fiber (ADF), neutral detergent fiber (NDF), acid detergent lignin 

(ADL), dan hemiselulosa yang lebih rendah, sementara kandungan selulosanya lebih tinggi dibandingkan dengan 

rumput yang dipanen pada umur 40 atau 50 hari. Hasil fermentasi rumen menunjukkan bahwa rumput yang dipanen 

pada umur 30 hari memiliki kecernaan bahan kering in vitro (IVDMD), kecernaan bahan organik in vitro (IVOMD), 

dan total asam lemak volatil (TVFA) yang lebih tinggi. Temuan ini menunjukkan bahwa rumput Mulato yang dipanen 

pada umur 30 hari memberikan kecernaan dan hasil fermentasi rumen yang lebih baik, sehingga menjadi pilihan 

hijauan yang sesuai untuk ruminansia di dataran rendah Jawa Barat, Indonesia. 

Kata kunci: Fraksi serat, Karakteristik in vitro, Rumput Mulato, Kandungan nutrisi. 

INTRODUCTION 

One of the main problems in ruminant 

production in Indonesia is the quality and 

quantity of forages to be utilized by ruminants 

(Dahlanuddin et al., 2014; Pengelly et al., 

2003; Rusdy, 2016). This low quality and 

quantity of forages are caused by the low 

genetic potential of the forage plant itself and 

the tropical climatic characteristics. Climatic 

characteristics in tropical regions consist of an 
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irregular distribution of rainfall due to the 

existence of two distinct seasons of the year, 

rainy and dry, resulting in qualitative and 

quantitative variations in the availability of 

forages (Sampaio et al., 2010). The low quality 

of forages is caused mainly by their low 

availability level of crude protein (CP) and 

neutral detergent fiber (NDF), which is 

essential for animal metabolism and 

performance (Sampaio et al., 2010). 

The impact of low quality and quantity 

of forages on the animal is high in several 

aspects, such as low quantity and quality of 

milk production (Sun et al., 2020; Wang et al., 

2014), low nutrient digestibility (Sampaio et 

al., 2010; Souza et al., 2010), and low health 

robustness caused by low immunity (Bertoni et 

al., 2009). These impacts have resulted in low 

implementation of farmers and animal welfare, 

especially in developing tropical countries, 

such as Indonesia. Therefore, these impacts 

need to be minimized to support farmers and 

animal welfare. 

Several researchers have been engaged 

in the search for higher genetic potentials as 

well as more tropical climatic-adaptive forage 

plants to solve the impact of its low quality 

and quantity (Benabderrahim & Elfalleh, 

2021; Rahman & Kawamura, 2011; Simeão et 

al., 2021). One of the potential forage plants is 

Mulato (Brachiaria hybrid cv. Mulato). 

Mulato is reportedly adapted to infertile soils 

and known for its tolerance of prolonged 

drought and regrowth after sporadic frost 

(Inyang et al., 2010). Furthermore, Mulato has 

superior nutritive value of crude protein (CP) 

concentrations fluctuating between 90 and 170 

g kg−1 and in vitro digestibility from 550 to 

620 g kg−1 when compared with other warm-

season grasses (Lascano et al., 2006). 

Mulato grass was developed and 

hybridized in 1989 by the International Center 

for Tropical Agriculture (CIAT) in Colombia 

with the cultivar code CIAT 36087 (Argel et 

al., 2007). Mulato grass is the product of 

hybridization between Brachiaria ruziziensis 

and Brachiaria decumbens cv. Basilisk. It is 

reported that Mulato grows well at altitudes 

ranging from sea level to 1800 meters above 

sea level in either a humid tropical 

environment or a sub-humid region with 5 to 6 

dry months with annual rainfall above 700 

mm, which also grows well in acidic and well-

drained soil (Argel et al., 2007).  

Mulato grass is also reported to respond 

well to fertilization, especially Nitrogen. 

Hence, in a regular fertilization rate, the forage 

yield of Mulato may range from 10 to 27 ton 

DM/ha/year, of which 20% might be produced 

in the dry season (Argel et al., 2007). Another 

study reported that Mulato had a higher 

herbage accumulation compared to other 

strains of Brachiaria (i.e. Ipypora), which was 

produced in the Amazon biome (Paraiso et al., 

2019). In the Southeast Asian region, 

Thailand, Mulato produced 60% higher DM 

compared to Ruzi grass, which made Mulato 

an interesting strain of grass to be utilized as 

the main forage for dairy cows (Pizarro et al., 

2013). In the nutritional aspect, Mulato’s crude 

protein (CP) content ranges from 10% to 17%, 

which is influenced by harvest frequency, 

canopy height, soil nitrogen availability, and 

seasonal changes (Silva et al., 2016; 

Vendramini et al., 2014).  

This study was conducted in Subang 

Regency, specifically within the Cipunagara 

District, where the socio-economic importance 

of lowland areas is pronounced in terms of 

animal production and agriculture 

(Fathurohman et al., 2023). Such regions, with 

their dense populations, are integral to the 

local economy, particularly in the agricultural 

sector. Research in these settings is poised to 

directly bolster local livelihoods, offering 

substantial contributions to enhancing 

sustainable agricultural practices (Kengo et al., 

2021). Additionally, the Cipunagara District 

provides a fundamental baseline for 

comparative studies, enabling researchers to 

draw contrasts with other ecological zones, 

such as uplands, in terms of crop yields, 

nutritional values, and environmental 

adaptability (De Costa & Sangakkara, 2006; 

Rao & Coe, 1991; Sandar et al., 2022). This 

not only promises to elevate agricultural 

productivity but also aligns with broader 

national objectives of food security and rural 

or urban development. 

To our knowledge, the study that 

addressed the proper time of Mulato harvest, 

especially in lowland areas in Tropical 

countries, is lacking. The aim of this study is 

to evaluate the nutritive value of Mulato 

biomass in different cutting ages of Mulato 

grass in West Java Province, Indonesia. 
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MATERIAL AND METHODS 

Study area and experimental design  

Our experiment was conducted in a 

grass land at Cipunagara Disrict (6°28'57.8"S 

107°51'43.2"E), Subang Regency, West Java, 

Indonesia (Fig. 1). The climate conditions of 

the study area were categorized in tropical 

rainforest climate (Beck et al., 2018) with low 

altitude (39 masl; (Indonesian Statistic Bureau, 

2020) and low annual rainfall (1000 mm/year; 

(Indonesian Statistic Bureau, 2020). The 

average annual ambient temperature of this 

area is 28°C, with an average annual relative 

humidity of 71.4% (Indonesian Statistic 

Bureau, 2020). Prior to the experiment, we 

analyzed the soil characteristics of the 

experimental site. The land of study area is an 

area of sedimentation from alluvial materials 

deposited from the upstream area. Soil that is 

formed comes from the main material of 

conglomerate rock, which is characteristic of 

the sedimentation area, and clay rock. The 

soils are associated with tropoudults, 

dystropepts, and haplortox, which generally 

indicate low fertility potential. This soil 

association can be characterized by its 

relatively light color with reddish brown. The 

pH of the soil before the experiment is 5.1, 

while the nitrogen content is 0.16%. 

In mid-June 2020, Mulato II plant was 

established as monoculture in 3 field plots (25 

m × 25 m) blocked by three different cutting 

age which is 30, 40, and 50 days, and each 

treatment has six replicates. The sowing rate 

was 18 kg/ha and row spacing was 50 x 50 cm. 

Watering frequency was twice daily (0700 and 

1700 hrs). 

 

Figure 1. Location of study area in Cipunagara District, Subang Regency, West Java Province, Indonesia 

(6°28'57.8"S 107°51'43.2"E), which is categorized as a tropical rainforest climate based on the Koppen climate 

classification (Beck et al., 2018).  
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Measurements 

The measured parameters were the 

Mulato grass’s nutrient content (proximate 

analysis), fiber fraction analysis (van Soest 

protocol), and in vitro analysis. The measured 

nutrient fractions using proximate analysis 

were the moisture (water content), ash 

(minerals), crude protein (CP), ether extract 

(EE), crude fiber (CF), and nitrogen-free 

extract (NFE). The fiber fraction analysis 

using the van Soest method comprises the 

determination of acid detergent fiber (ADF), 

neutral detergent fiber (NDF) contents, 

cellulose, hemicellulose, and acid detergent 

lignin (ADL) contents (P. J. Van Soest et al., 

2020).  

The grass stems were chopped into small 

pieces, dried at 60°C, and milled to determine 

the cellulose, hemicellulose, and ADL content 

in accordance with Van Soest and Robertson's 

methods (P. J. Van Soest et al., 1991, 2020; P. 

Van Soest & Robertson, 1979), which is 

commonly known as Van Soest fibre analysis. 

After digesting samples using chemical 

reagents, this approach detects neutral 

detergent fiber (NDF), acid detergent fiber 

(ADF), and acid detergent lignin (ADL). First 

acquired through digestion in a neutral 

detergent solution, NDF comprises primarily 

of cellulose, hemicellulose, and lignin. After 

processing NDF with an acid detergent, ADF 

is formed, which consists primarily of 

cellulose and lignin. ADL was produced by 

removing cellulose from ADF using H2SO4. 

The cellulose content is determined by 

subtracting ADF from ADL, while the 

hemicellulose content is determined by 

subtracting NDF from ADF. The lignin 

content is represented by ADL. The in vitro 

analyses included dry matter digestibility, 

organic matter digestibility, and total volatile 

fatty acid (VFA) synthesis. The IVDMD and 

IVOMD concentrations were determined using 

Tilley and Terry's method (Tilley & Terry, 

1963), with an adjustment to use an artificial 

rumen, as described in a previous work 

(Epifanio et al., 2019).  

 

Statistical analysis 

Data were analysed using analysis of 

variance (ANOVA) in GLM procedure in SAS 

Statistics (Ver. 9.4, Cary, NC, USA) to 

determine the effects of different cutting ages 

on Mulato grass nutrient content, fiber 

fractions, and in vitro characteristics. 

Therefore, the statistical model included 

cutting age as a fixed effect. Duncan’s 

Multiple Range Test was carried out for 

subsequent comparison of means. The data 

were expressed as least square means (LSM) 

of the respective parameter with the pooled 

standard error of means (SEM). The difference 

is considered significant at p<0.05. To 

determine the correlation between fibrous 

nutritional parameters and in vitro digestibility 

parameters, the Pearson’s correlation analyses 

were used with the PROC CORR procedure in 

SAS Statistics (Ver. 9.4, Cary, NC, USA), 

with their p-value determinations.  

RESULTS 

Nutrient Content of Mulato II Grass at 

Different Cutting Ages 

The proximate analysis and fiber 

fraction contents of Mulato II grass harvested 

at 30 (S30), 40 (S40), and 50 (S50) days are 

presented in Table 1. The ash content was 

significantly higher in grass harvested at 30 

days (9.59%) compared to those harvested at 

40 days (9.07%) and 50 days (7.87%) 

(P = 0.0072), indicating a higher mineral 

content at the earlier cutting age. There were 

no significant differences in dry matter (DM), 

crude protein, crude fiber, crude fat, nitrogen-

free extract (NFE), phosphorus (P), and 

nitrogen content among the different cutting 

ages (P > 0.05). 

Significant differences (P < 0.0001) 

were observed among the cutting ages for fiber 

fractions, including acid detergent fiber 

(ADF), neutral detergent fiber (NDF), acid 

detergent lignin (ADL), hemicellulose, and 

cellulose. The ADF content increased with 

cutting age, from 30.79% at S30 to 41.60% at 

S50. Similarly, NDF content rose from 

57.07% at S30 to 63.00% at S50, and ADL 

content increased from 4.57% at S30 to 5.97% 

at S50. Hemicellulose content was higher at 

S50 (26.28%) compared to S30 (21.40%) and 

S40 (20.25%). In contrast, cellulose content 

was higher at S30 (35.63%) and S40 (35.16%) 

than at S50 (26.22%). 

 

In Vitro Digestibility and Fermentation 

Characteristics 

The in vitro digestibility and 

fermentation characteristics of Mulato II grass 
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at different cutting ages are shown in Table 2. 

The in vitro dry matter digestibility (IVDMD) 

was significantly higher at S30 (65.17%) 

compared to S40 (60.85%) and S50 (53.14%) 

(P < 0.0001). Similarly, the in vitro organic 

matter digestibility (IVOMD) was 

significantly higher at S30 (67.40%) than at 

S40 (65.06%) and S50 (57.61%) (P < 0.0001). 

Total volatile fatty acids (TVFA) 

production was highest at S30 (126.33 

mmol·L⁻¹·100 mg⁻¹), decreasing significantly 

at S40 (119.50 mmol·L⁻¹·100 mg⁻¹) and S50 

(100.67 mmol·L⁻¹·100 mg⁻¹) (P < 0.0001). The 

pH levels tended to be higher at S30 (7.28) but 

were not significantly different among 

treatments (P = 0.0753). Ammonia (NH₃) 

production showed no significant differences 

among the cutting ages (P = 0.7943). 

 

Correlation Between Fiber Content and 

Digestibility Parameters 

Correlation coefficients between fibrous 

nutritional contents and in vitro digestibility 

parameters are presented in Table 3. 

Significant negative correlations (P < 0.05) 

were found between ADF, NDF, and ADL 

contents and IVDMD, IVOMD, and TVFA 

production (Figure 2 A and B). This indicates 

that higher fiber contents are associated with 

lower digestibility and fermentation efficiency. 

No significant correlations were observed 

between fiber contents and pH or NH₃ 

production (Figure 3). 

 

Table 1. Proximate analysis and fiber fraction content of Mulato II in different cutting age in this 

experiment (%). 

Parameter1 
Cutting age 

Pooled SEM p-value remarks 
S30 S40 S50 

Proximate Analysis  

DM 237.33 291.76 253.46 13.59 0.2563  

Ash 9.59b 9.07b 7.87a 0.25 0.0072 sig 

Crude Protein 11.09 10.70 9.26 0.47 0.2599  

Crude Fiber 28.29 28.19 28.50 0.60 0.9799  

Crude Fat 1.75 1.64 1.71 0.08 0.8724  

NFE 49.80 51.60 50.94 0.57 0.4621  

P 0.13 0.11 0.13 0.01 0.4564  

Fiber Fraction  

ADF 30.79a 40.62b 41.60b 1.21 <.0001 sig 

NDF 57.07a 60.87b 63.00c 0.63 <.0001 sig 

ADL 4.57a 5.46b 5.97c 0.15 <.0001 sig 

Hemicellulose 21.40a 20.25a 26.28b 0.72 <.0001 sig 

Cellulose 35.63b 35.16b 26.22a 1.08 <.0001 sig 

N Content 1.78 1.71 1.48 0.08 0.2599  

Note: DM: dry matter; NFE: Nitrogen-free extract; P: Phosphorus; ADF: acid detergent fiber; NDF: neutral detergent 

fiber; ADL: Acid Detergent Lignin; N: Nitrogen.Total gas production and pH  

 

 

Table 1. Mulato II in vitro assessment characteristics in different cutting ages in this experiment (%, 

otherwise indicated differently). 

Parameter1 S30 S40 S50 Pooled SEM p-value remarks 

IVDMD (%) 65.17c 60.85b 53.14a 1.22 <.0001 sig 

IVOMD (%) 67.40c 65.06b 57.61a 1.04 <.0001 sig 

pH 7.28b 7.2a 7.22ab 0.02 0.0753 tendency 

TVFA1 126.33c 119.50b 100.67a 2.80 <.0001 sig 

NH3 3.84 4.25 4.02 0.23 0.7943  

Note: 1IVDMD: in vitro dry matter digestibility; IVOMD: in vitro organic matter digestibility; TVFA: total volatile fatty 

acid (mmol.L-1/100 mg of sample).  
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Table 2. Correlation coefficients between fibrous nutritional contents and in vitro digestibility 

parameters. 
 

ADF NDF ADL Hemicellulose Cellulose 

IVDMD -0.80* -0.88* -0.87* 0.58 -0.77* 

IVOMD -0.72* -0.82* -0.81* 0.50 -0.69* 

pH 0.23 0.30 0.45 -0.12 0.19 

TVFA -0.71* -0.81* -0.80* 0.48 -0.68* 

NH3 0.15 0.04 -0.04 -0.22 0.17 

*: significant correlation (p<0.05). 

 

 

 
 

 

Figure 2. Correlation between ADL with (A) IVDMD and (B) IVOMD in this experiment. 

 

 
Figure 3. Interaction between cutting age, ADL contents, and IVDMD in this experiment. 

 

 

Discussion 

This study highlights how the cutting 

age of Mulato II grass significantly affects its 

nutrient composition and in vitro digestibility, 

which has important implications for its use as 

ruminant feed in tropical lowland areas 

(Adams et al., 2019; Costa et al., 2016). The 

higher ash content observed in grass harvested 

at 30 days suggests that mineral concentrations 

are higher at earlier growth stages (Schlegel et 

al., 2016). During early growth stages 

(germination and seedling development), 

mineral nutrients are especially critical. Seeds 

contain stored reserves of minerals, but these 

are often limited. As a seed germinates, the 

young plant must quickly begin absorbing 

nutrients from its environment to support rapid 

A 

 

 

B 
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cell division and the establishment of roots and 

shoots. For example, developing seedlings 

have high demands for nutrients like nitrogen 

(for new proteins and enzymes) and 

phosphorus (for ATP and nucleic acids) to fuel 

their intense metabolic activity. If any 

essential nutrient is lacking at this stage, 

growth can be stunted or abnormal right from 

the start. By contrast, during later stages 

(vegetative growth, flowering, and fruiting), 

nutrient deficiencies often manifest as specific 

symptoms in mature tissues (such as leaf 

discoloration or poor yield). These findings 

align with previous studies indicating that ash 

content tends to decrease as Brachiaria species 

mature (Wassie et al., 2018) and are consistent 

with observations in other forage crops such as 

triticale (Coblentz et al., 2018). Similarly, 

research by Nguyen et al. (2024) showed that 

harvesting Mulato II grass earlier than its 

typical regrowth period improves nutrient 

quality, including mineral content, making it 

more suitable as ruminant feed. 

As the cutting age advances, the fiber 

fractions, such as acid detergent fiber (ADF), 

neutral detergent fiber (NDF), acid detergent 

lignin (ADL), and hemicellulose, show a 

significant increase. This pattern reflects the 

natural maturation process, where older grass 

accumulates more structural carbohydrates and 

lignin, leading to greater rigidity but reduced 

digestibility. The increase in lignin content 

strengthens plant cell walls and lowers 

nutritional value for ruminants, as they lack 

the necessary enzymes to break it down 

(Astudillo-Neira et al., 2022). Similar trends in 

fiber accumulation with grass maturity have 

been reported by Nguyen et al. (2024) and 

Adnew et al. (2023), suggesting that delaying 

harvest could result in lower forage quality. 

The accumulation of fiber fractions in plant 

cell walls during growth and development is 

primarily driven by the biosynthesis and 

deposition of cellulose, hemicellulose, pectin, 

and lignin, coordinated through vesicle 

trafficking and cytoskeletal organization 

(Kumar & Turner, 2015; Zhang & Zhou, 

2015). Cellulose is synthesized at the plasma 

membrane, while hemicelluloses and pectins 

are produced in the Golgi and integrated into 

the wall matrix, contributing to extensibility 

and structure (Cosgrove, 1997; Lampugnani et 

al., 2018). Wall-loosening proteins like 

expansins and enzymes such as XTHs and 

pectinases facilitate expansion by modifying 

interactions between polysaccharides 

(Cosgrove, 1997; DeGrave, 2022). 

Microtubule-guided alignment of cellulose 

microfibrils ensures structural orientation 

(Chernova & Gorshkova, 2007), while 

different growth modes, such as intrusive and 

multinet growth, influence fiber patterning and 

wall thickening (Mühlethaler, 1961). The cell 

wall integrity (CWI) sensing mechanism and 

hormonal signals further modulate 

biosynthesis and remodeling in response to 

developmental and environmental cues (Gigli-

Bisceglia et al., 2020; Sakurai, 1991). 

Together, these mechanisms ensure the 

adaptive accumulation of fiber components 

essential for plant form and function. 

The findings also indicate that higher 

ADF and NDF levels at 50 days are linked to 

reduced digestibility, as shown by the lower 

values of in vitro dry matter digestibility 

(IVDMD) and in vitro organic matter 

digestibility (IVOMD). The significant 

negative correlations between fiber content 

(ADF, NDF, ADL) and digestibility 

parameters (IVDMD, IVOMD, TVFA) 

confirm that increased fiber and lignin content 

negatively impact fermentation efficiency and 

nutrient availability (Peters et al., 2022). These 

results align with studies showing that high 

lignin levels hinder fermentation and nutrient 

absorption (Fukushima et al., 2015; Jung et al., 

1997; Gemeda & Hassen, 2015). 

Furthermore, higher total volatile fatty 

acid (TVFA) production in grass harvested at 

30 days suggests more efficient fermentation 

by rumen microbes (Ma et al., 2021). This can 

be attributed to the lower fiber content and 

reduced lignification, allowing better 

microbial access to nutrients (Gemeda & 

Hassen, 2015). Similar findings by Nguyen et 

al. (2024) indicate that harvesting Mulato II 

grass one to two weeks earlier than usual can 

enhance forage quality and fermentation 

potential, ultimately improving feed efficiency 

in ruminants. 

Although crude protein (CP) content 

decreased with advancing cutting age, the 

differences were not statistically significant. 

This trend is consistent with findings from 

Adnew et al. (2023) and Worku et al. (2021), 

who reported higher CP levels in Mulato II 

grass harvested at earlier stages. The decline in 

CP content as the plant matures is likely due to 

the dilution effect, where the accumulation of 
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structural carbohydrates reduces the relative 

protein concentration. 

Interestingly, the study found that grass 

harvested at 30 days contained higher cellulose 

levels compared to grass harvested at 50 days. 

This could be attributed to the greater 

proportion of digestible cellulose relative to 

indigestible lignin in earlier growth stages. As 

the plant matures, lignin binds with cellulose 

and hemicellulose, making them less 

accessible to microbial enzymes (Barros et al., 

2015). The higher cellulose content in younger 

plants contributes to better digestibility, 

reflected in the improved IVDMD and 

IVOMD values. 

Changes in nutrient composition and 

digestibility with different cutting ages are 

primarily influenced by the plant’s 

physiological development. Younger plants 

contain higher proportions of easily digestible 

cell components such as proteins, sugars, and 

minerals. However, as the plant matures, the 

proportion of structural carbohydrates and 

lignin increases, creating a physical barrier 

that limits microbial access to nutrients 

(Barros et al., 2015). This shift reduces the 

overall digestibility and nutritional value of the 

forage. 

Harvesting Mulato II grass at 30 days is 

recommended to optimize its nutritional value 

and digestibility for ruminants. High-quality 

forage with elevated CP content and lower 

fiber fractions can enhance growth rates, milk 

production, and overall animal health. These 

findings are particularly useful for farmers in 

tropical lowland areas who aim to maximize 

forage quality and efficiency. This study 

provides practical recommendations regarding 

the optimal harvesting time to maximize the 

nutritional benefits of Mulato II grass in 

ruminant diets. 

The advantages of early harvesting are 

further supported by Silva et al. (2016), who 

reported that harvesting Mulato II grass at a 

canopy height of 25 cm optimizes its 

nutritional value and grazing efficiency. Their 

research found that earlier harvesting resulted 

in higher CP content and improved 

digestibility, which are critical for ruminant 

nutrition. Similarly, Adnew et al. (2023) 

demonstrated that harvesting Mulato II grass at 

30 days enhances its nutrient composition and 

in vitro digestibility, further supporting our 

findings. Their study highlighted that earlier-

harvested grass had higher CP content and 

lower fiber fractions compared to later 

harvests, leading to improved forage quality. 

Our findings align with those of 

Nouhoun et al. (2021), who observed that the 

Mulato II cultivar offers superior nutritive 

value when harvested earlier, with higher CP 

content and better digestibility. Botero-

Londoño et al. (2021) also found that 

extending the cutting interval decreased the 

nutritional quality of King grass, leading to 

lower protein levels and higher fiber content. 

These studies collectively emphasize the 

importance of early harvesting to maintain 

forage quality. 

However, one limitation of this study is 

that it was conducted under controlled 

experimental conditions within a specific 

tropical lowland area. Factors such as soil 

fertility, climate variations, and farm 

management practices can influence forage 

nutrient composition and digestibility. 

Therefore, applying these findings to different 

regions or farming systems should be 

approached cautiously. 

Future studies should explore field trials 

across diverse agroecological settings to 

validate the effects of cutting age on Mulato II 

grass. Previous research by Adnew et al. 

(2023) in Ethiopia and Worku et al. (2021) in 

the Ethiopian highlands has demonstrated that 

environmental conditions can have a 

significant impact on forage quality. 

Additionally, further research should 

investigate animal performance metrics, such 

as growth rates and milk production, when fed 

Mulato II grass harvested at different stages. 

Examining interactions between cutting age 

and other management factors, such as 

fertilization, irrigation, and plant spacing, 

could provide valuable insights to enhance 

forage production strategies (Botero-Londoño 

et al., 2021; Nouhoun et al., 2021). 

CONCLUSION 

In conclusion, this study might confirm 

a plausible timing of Mulato II grass cutting 

age in Indonesia, which is 30 days of age. In 

this age, harvested Mulato II grass contains 

more protein content, although slightly lower 

in fibre content. Furthermore, it is interesting 

to note that higher IVDMD, IVOMD, and in 

vitro VFA production were higher with lower 

ADL content in the cutting age of 30 days, 
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ensuring a better digestibility when fed to the 

animal. However, the results of this study 

might only be limited to the tropical lowland 

area with a tropical rainforest climate. The 

results of this experiment might be valuable as 

a baseline for the farmers in the tropics 

regarding the best time to harvest their Mulato 

grass, to obtain the optimum nutritional value 

of the grass. 
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