A Comprehensive Review: Integrated Microbial Xylitol, Bioethanol, and Cellulase Production from Oil Palm Empty Fruit Bunches

Budi Mandra Harahap, Efri Mardawati, Desy Nurliasari

Abstrak


Oil palm empty fruit bunch (OPEFB) is one of promising biomass feedstock for green production of biochemical and biofuel. The OPEFB contains valuable sugar polymers such as cellulose and hemicellulose. Enzymatic hydrolysis of both constituents is an eco-friendly conversion process to release monomeric sugars such as glucose and xylose used for fermentation substrates. Xylose, a dominant sugar in hemicellulose, can be biologically converted to xylitol, a low-calorie sugar for food and pharmaceutical applications. Meanwhile, glucose from cellulose hydrolysis can be fermented to bioethanol. Moreover, numerous studies also have reported the use of the pretreated OPEFB as a solid medium for the production of the lignocellulose-degrading enzyme. The current research, however, only focuses on one specific product. An integrated process to produce those products is the best alternative to minimize waste disposal and to increase the value of OPEFB. Thus, this review elaborates the most possible technologies for the integrated production of cellulase, xylitol, and bioethanol as well as the possible challenges in process development.

Teks Lengkap:

PDF (English)

Referensi


Arrizon, J., Mateos, J. C., Sandoval, G., Aguilar, B., Solis, J., & Aguilar, M. G. (2012). Bioethanol and xylitol production from different lignocellulosic hydrolysate by sequential fermentation. Journal of Food Process Engineering, 35(3), 437–454. https://doi.org/10.1111/j.1745-4530.2010.00599.x

Balat, M. (2011). Production of bioethanol from lignocellulosic materials via the biochemical pathway : A review. Energy Conversion and Management, 52(2), 858–875. https://doi.org/10.1016/j.enconman.2010.08.013

BPS-Statistics Indonesia. (2018). Indonesian Oil Palm Statistics 2018. Retrieved May 7, 2020, from https://www.bps.go.id/publication/2019/11/22/1bc09b8c5de4dc77387c2a4b/statistik-kelapa-sawit-indonesia-2018.html

Cheng, B., Zhang, X., Lin, Q., Xin, F., Sun, R., Wang, X., & Ren, J. (2018). A new approach to recycle oxalic acid during lignocellulose pretreatment for xylose production. Biotechnology for Biofuels, 11, 1–9. https://doi.org/10.1186/s13068-018-1325-3

Cheng, K. K., Zhang, J. A., Chavez, E., & Li, J. P. (2010). Integrated production of xylitol and ethanol using corncob. Applied Microbiology and Biotechnology, 87, 411–417. https://doi.org/10.1007/s00253-010-2612-5

Cheng, K., Wu, J., Lin, Z., & Zhang, J. (2014). Aerobic and sequential anaerobic fermentation to produce xylitol and ethanol using non-detoxified acid pretreated corncob, 1–9. https://doi.org/10.1186/s13068-014-0166-y

da Silva, F. L., de Oliveira Campos, A., dos Santos, D. A., de Oliveira Júnior, S. D., de Araújo Padilha, C. E., de Sousa Junior, F. C., … dos Santos, E. S. (2018). Pretreatments of Carnauba (Copernicia prunifera) straw residue for production of cellulolytic enzymes by Trichorderma reesei CCT-2768 by solid state fermentation. Renewable Energy, 116, 299–308. https://doi.org/10.1016/j.renene.2017.09.064

Damião Xavier, F., Santos Bezerra, G., Florentino Melo Santos, S., Sousa Conrado Oliveira, L., Luiz Honorato Silva, F., Joice Oliveira Silva, A., & Maria Conceição, M. (2018). Evaluation of the Simultaneous Production of Xylitol and Ethanol from Sisal Fiber. Biomolecules, 8(1), 1–13. https://doi.org/10.3390/biom8010002

Das, A., Mondal, C., & Roy, S. (2015). Pretreatment methods of ligno-cellulosic biomass: A review. Journal of Engineering Science and Technology Review, 8(5), 141–165. https://doi.org/10.25103/jestr.085.20

Deshavath, N. N., Dasu, V. V., Goud, V. V, & Rao, P. S. (2017). Biocatalysis and Agricultural Biotechnology Development of dilute sulfuric acid pretreatment method for the enhancement of xylose fermentability. Biocatalysis and Agricultural Biotechnology, 11(July), 224–230. https://doi.org/10.1016/j.bcab.2017.07.012

Duangwang, S., Ruengpeerakul, T., Cheirsilp, B., & Yamsaengsung, R. (2016). Pilot-scale steam explosion for xylose production from oil palm empty fruit bunches and the use of xylose for ethanol production. Bioresource Technology, 203, 252–258. https://doi.org/10.1016/j.biortech.2015.12.065

Fatriasari, W., Raniya, R., Oktaviani, M., & Hermiati, E. (2018). The Improvement of Sugar and Bioethanol Production of Oil Palm Empty Fruit Bunches ( Elaeis guineensis Jacq) through Microwave-Assisted Maleic Acid Pretreatment. Bioresources.Com, 13, 4378–4403.

Gupta, A., & Prakash, J. (2015). Sustainable bio-ethanol production from agro-residues : A review. Renewable and Sustainable Energy Reviews, 41, 550–567. https://doi.org/10.1016/j.rser.2014.08.032

Harahap, B. M., & Kresnowati, M. T. A. P. (2018). Moderate pretreatment of oil palm empty fruit bunches for optimal production of xylitol via enzymatic hydrolysis and fermentation. Biomass Conversion and Biorefinery, 8(2), 255–263. https://doi.org/10.1007/s13399-017-0299-x

Hernández-Pérez, A. F., de Arruda, P. V., & Felipe, M. D. G. D. A. (2016). Sugarcane straw as a feedstock for xylitol production by Candida guilliermondii FTI 20037. Brazilian Journal of Microbiology, 47(2), 489–496. https://doi.org/10.1016/j.bjm.2016.01.019

Hickert, L. R., Souza-Cruz, P. B. de, Rosa, C. A., & Ayub, M. A. Ô. Z. (2013). Simultaneous saccharification and co-fermentation of un-detoxified rice hull hydrolysate by Saccharomyces cerevisiae ICV D254 and Spathaspora arborariae NRRL Y-48658 for the production of ethanol and xylitol. Bioresource Technology, 143, 112–116. https://doi.org/10.1016/j.biortech.2013.05.123

Hong, E., Kim, J., Rhie, S., Ha, S., Kim, J., & Ryu, Y. (2016). Optimization of Dilute Sulfuric Acid Pretreatment of Corn Stover for Enhanced Xylose Recovery and Xylitol Production. Biotechnology and Bioprocess Engineering, 21, 612–619. https://doi.org/10.1007/s12257-016-0483-z

Idris, A. S. O., Pandey, A., Rao, S. S., & Sukumaran, R. K. (2017). Cellulase production through solid-state tray fermentation, and its use for bioethanol from sorghum stover. Bioresource Technology, 242, 265–271. https://doi.org/10.1016/j.biortech.2017.03.092

Ishola, M. M., Isroi, & Taherzadeh, M. J. (2014). Effect of fungal and phosphoric acid pretreatment on ethanol production from oil palm empty fruit bunches ( OPEFB ). Bioresource Technology, 165, 9–12. https://doi.org/10.1016/j.biortech.2014.02.053

Jia, H., Shao, T., Zhong, C., Li, H., Jiang, M., Zhou, H., & Wei, P. (2016). Evaluation of xylitol production using corncob hemicellulosic hydrolysate by combining tetrabutylammonium hydroxide extraction with dilute acid hydrolysis. Carbohydrate Polymers, 151, 676–683. https://doi.org/10.1016/j.carbpol.2016.06.013

Kim, S., & Ho, C. (2013). Bioethanol production using the sequential acid / alkali-pretreated empty palm fruit bunch fiber. Renewable Energy, 54, 150–155. https://doi.org/10.1016/j.renene.2012.08.032

Kresnowati, M., Mardawati, E., & Setiadi, T. (2015). Production of Xylitol from Oil Palm Empty Friuts Bunch: A Case Study on Bioefinery Concept. Modern Applied Science, 9(7), 206. https://doi.org/10.5539/mas.v9n7p206

Kulkarni, N., Vaidya, T., & Rathi, G. (2018). Production of cellulase by Aspergillus Sp. Under solid state fermentation. The Pharma Innovation Journal, 7(1), 193–196.

Kumar, S., Dheeran, P., Singh, S. P., Mishra, I. M., & Adhikari, D. K. (2014). Bioprocessing of bagasse hydrolysate for ethanol and xylitol production using thermotolerant yeast. Bioprocess and Biosystems Engineering, 39–47. https://doi.org/10.1007/s00449-014-1241-2

Lah, T. N. T., Norulaini, N. A. R. N., Shahadat, M., Nagao, H., Hossain, M. S., & Omar, A. K. M. (2016). Utilization of Industrial Waste for the Production of Cellulase by the Cultivation of Trichoderma via Solid State Fermentation. Environmental Processes, 3(4), 803–814. https://doi.org/10.1007/s40710-016-0185-8

Latif, F., & Rajoka, M. I. (2001). Production of ethanol and xylitol from corn cobs by yeasts, 77(September 1999), 57–63.

Loow, Y., Yeong, T., Shen, Y., Aik, K., Fong, L., Jahim, J., & Wahab, A. (2017). Improvement of xylose recovery from the stalks of oil palm fronds using inorganic salt and oxidative agent. Energy Conversion and Management, 138, 248–260. https://doi.org/10.1016/j.enconman.2016.12.015

Lyu, H., Zhang, J., Zhou, J., Shi, X., Lv, C., & Geng, Z. (2019). A subcritical pretreatment improved by self-produced organic acids to increase xylose yield. Fuel Processing Technology, 195(March), 106148. https://doi.org/10.1016/j.fuproc.2019.106148

Mahlia, T. M. I., Abdulmuin, M. Z., Alamsyah, T. M. I., & Mukhlishien, D. (2001). An alternative energy source from palm wastes industry for Malaysia and Indonesia, 42, 2109–2118.

Mardawati, E., Werner, A., Bley, T., Kresnowati, M. T. A. P., & Setiadi, T. (2014). The enzymatic hydrolysis of oil palm empty fruit bunches to xylose. J. Jpn. Inst. Energy, 93, 973–978.

Mardawati, E., Wira, D. W., Kresnowati, M. T. A. P., Purwadi, R., & Setiadi, T. (2015). Microbial production of xylitol from oil palm empty fruit bunches hydrolysate : The effect of glucose concentration. J. Jpn. Inst. Energy, 94, 769–774.

Maris, A. J. A. Van, Abbott, Æ. D. A., Bellissimi, Æ. E., Brink, J. Van Den, Kuyper, Æ. M., Luttik, Æ. M. A. H., … Pronk, J. T. (2006). Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae : current status, 391–418. https://doi.org/10.1007/s10482-006-9085-7

Martínez, M. L., Sánchez, S., & Bravo, V. (2012). Production of xylitol and ethanol by Hansenula polymorpha from hydrolysates of sunflower stalks with phosphoric acid. Industrial Crops and Products, 40, 160–166. https://doi.org/10.1016/J.INDCROP.2012.03.001

Mateo, S., Puentes, J. G., Moya, A. J., & Sánchez, S. (2015). Ethanol and xylitol production by fermentation of acid hydrolysate from olive pruning with Candida tropicalis NBRC 0618. Bioresource Technology, 190, 1–6. https://doi.org/10.1016/j.biortech.2015.04.045

Menon, V., & Rao, M. (2012). Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Progress in Energy and Combustion Science, 38(4), 522–550. https://doi.org/10.1016/j.pecs.2012.02.002

Michelin, M., Romaní, A., Salgado, J. M., Domingues, L., & Teixeira, J. A. (2017). Production of Hemicellulases, Xylitol, and Furan from Hemicellulosic Hydrolysates Using Hydrothermal Pretreatment. In H. A. Ruiz, M. Hedegaard Thomsen, & H. L. Trajano (Eds.), Hydrothermal Processing in Biorefineries: Production of Bioethanol and High Added-Value Compounds of Second and Third Generation Biomass (pp. 285–315). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-56457-9_11

Millati, R., Wikandari, R., Trihandayani, E. T., Cahyanto, M. N., Taherzadeh, M. J., & Niklasson, C. (2011). Ethanol from Oil Palm Empy Fruit Bunch via Dilute-Acid Hydrolysis and Fermentation by Mucor indicus and Saccharomyces cerevisiae. Agricultural Journal, 6(2), 54–59.

Morais Junior, W. G., Pacheco, T. F., Trichez, D., Almeida, J. R. M., & Gonçalves, S. B. (2019). Xylitol production on sugarcane biomass hydrolysate by newly identified Candida tropicalis JA2 strain. Yeast, 36(5), 349–361. https://doi.org/10.1002/yea.3394

Nava-Cruz, N. Y., Contreras-Esquivel, J. C., Aguilar-González, M. A., Nuncio, A., Rodríguez-Herrera, R., & Aguilar, C. N. (2016). Agave atrovirens fibers as substrate and support for solid-state fermentation for cellulase production by Trichoderma asperellum. 3 Biotech, 6(1). https://doi.org/10.1007/s13205-016-0426-6

Ong, V. Z., Wu, T. Z., Lee, C. B. L. T., Cheong, N. W. R., Cheong, R., & Shak, K. P. Y. (2019). Ultrasonics - Sonochemistry Sequential ultrasonication and deep eutectic solvent pretreatment to remove lignin and recover xylose from oil palm fronds. Ultrasonics - Sonochemistry, 58(January), 104598. https://doi.org/10.1016/j.ultsonch.2019.05.015

Ortiz, G. E., Guitart, M. E., Cavalitto, S. F., Albertó, E. O., Fernández-Lahore, M., & Blasco, M. (2015). Characterization, optimization, and scale-up of cellulases production by trichoderma reesei cbs 836.91 in solid-state fermentation using agro-industrial products. Bioprocess and Biosystems Engineering, 38(11), 2117–2128. https://doi.org/10.1007/s00449-015-1451-2

Palmqvist, E. (2000). Fermentation of lignocellulosic hydrolysates . I : inhibition and detoxi ® cation, 74.

Parajo, J. C., Domínguez, H., & Domíngues, J. M. (1998). Biotechnological production of xylitol. Part 1: Interest of xylitol and fundamentals of its biosynthesis. Bioresource Technology, 65, 191–201.

Pirota, R. D. P. B., Tonelotto, M., Delabona, P. S., Fonseca, R. F., Paixão, D. A. A., Baleeiro, F. C. F., … Farinas, C. S. (2016). Bioprocess developments for cellulase production by aspergillus oryzae cultivated under solid-state fermentation. Brazilian Journal of Chemical Engineering, 33(1), 21–31. https://doi.org/10.1590/0104-6632.20160331s00003520

Polizeli, M. M. L. T. M. (2005). Xylanases from fungi : properties and industrial applications, 577–591. https://doi.org/10.1007/s00253-005-1904-7

Saha, B. C. (2003). Hemicellulose bioconversion, 279–291. https://doi.org/10.1007/s10295-003-0049-x

Sapcı, B., Akpinar, O., Bolukbasi, U., & Yilmaz, L. (2016). Evaluation of cotton stalk hydrolysate for xylitol production. Preparative Biochemistry and Biotechnology, 46(5), 474–482. https://doi.org/10.1080/10826068.2015.1084511

Sehnem, N. T., Hickert, L. R., da Cunha-Pereira, F., de Morais, M. A., & Ayub, M. A. Z. (2017). Bioconversion of soybean and rice hull hydrolysates into ethanol and xylitol by furaldehyde-tolerant strains of Saccharomyces cerevisiae, Wickerhamomyces anomalus, and their cofermentations. Biomass Conversion and Biorefinery, 7(2), 199–206. https://doi.org/10.1007/s13399-016-0224-8

Shahbandeh, M. (2020). Production volume of palm oil worldwide from 2012/13 to 2019/20. Retrieved May 7, 2020, from https://www.statista.com/statistics/613471/palm-oil-production-volume-worldwide/

Su, L. H., Zhao, S., Jiang, S. X., Liao, X. Z., Duan, C. J., & Feng, J. X. (2017). Cellulase with high β-glucosidase activity by Penicillium oxalicum under solid state fermentation and its use in hydrolysis of cassava residue. World Journal of Microbiology and Biotechnology, 33(2), 0. https://doi.org/10.1007/s11274-016-2200-7

Sudiyani, Y., Styarini, D., Triwahyuni, E., Sudiyarmanto, Sembiring, K. C., Aristiawan, Y., … Han, M. H. (2013). Utilization of biomass waste empty fruit bunch fiber of palm oil for bioethanol production using pilot – scale unit. Energy Procedia, 32, 31–38. https://doi.org/10.1016/j.egypro.2013.05.005

Sukhang, S., Choojit, S., & Reungpeerakul, T. (2019). Bioethanol production from oil palm empty fruit bunch with SSF and SHF processes using Kluyveromyces marxianus yeast. Cellulose, 2. https://doi.org/10.1007/s10570-019-02778-2

Swain, M. R., & Krishnan, C. (2015). Improved conversion of rice straw to ethanol and xylitol by combination of moderate temperature ammonia pretreatment and sequential fermentation using Candida tropicalis. Industrial Crops and Products, 77, 1039–1046. https://doi.org/10.1016/j.indcrop.2015.10.013

Taherzadeh, M. J., & Karimi, K. (2007). Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review (Vol. 2).

Tizazu, B. Z., Roy, K., & Moholkar, V. S. (2018). Ultrasonic enhancement of xylitol production from sugarcane bagasse using immobilized Candida tropicalis MTCC 184. Bioresource Technology, 268, 247–258. https://doi.org/10.1016/j.biortech.2018.07.141

Trivedi, N., Reddy, C. R. K., Radulovich, R., & Jha, B. (2015). Solid state fermentation (SSF)-derived cellulase for saccharification of the green seaweed Ulva for bioethanol production. Algal Research, 9, 48–54. https://doi.org/10.1016/j.algal.2015.02.025

Triwahyuni, E., Sudiyani, Y., & Abimanyu, H. (2015). The effect of substrate loading on simultaneous saccharification and fermentation process for bioethanol production from oil palm empty fruit bunches. Energy Procedia, 68, 138–146. https://doi.org/10.1016/j.egypro.2015.03.242

Unrean, P., & Ketsub, N. (2018). Integrated lignocellulosic bioprocess for co-production of ethanol and xylitol from sugarcane bagasse. Industrial Crops and Products, 123(April), 238–246. https://doi.org/10.1016/j.indcrop.2018.06.071

Ur-Rehman, S., Mushtaq, Z., Zahoor, T., Jamil, A., & Murtaza, M. A. (2015). Xylitol: A Review on Bioproduction, Application, Health Benefits, and Related Safety Issues. Critical Reviews in Food Science and Nutrition, 55(11), 1514–1528. https://doi.org/10.1080/10408398.2012.702288

Van Zyl, C., Prior, B. A., Kilian, S. G., & Kock, J. L. F. (2009). D-Xylose Utilization by Saccharomyces cerevisiae. Microbiology, 135(11), 2791–2798. https://doi.org/10.1099/00221287-135-11-2791

Vanderghem, C., Richel, A., Jacquet, N., Blecker, C., & Paquot, M. (2011). Impact of formic/acetic acid and ammonia pre-treatments on chemical structure and physico-chemical properties of Miscanthus x giganteus lignins. Polymer Degradation and Stability, 96(10), 1761–1770. https://doi.org/10.1016/j.polymdegradstab.2011.07.022

Venkateswar Rao, L., Goli, J. K., Gentela, J., & Koti, S. (2015). Bioconversion of lignocellulosic biomass to xylitol: An overview. Bioresource Technology, 213, 299–310. https://doi.org/10.1016/j.biortech.2016.04.092

Wannawilai, S., Chisti, Y., & Sirisansaneeyakul, S. (2017). A model of furfural-inhibited growth and xylitol production by Candida magnoliae TISTR 5663. Food and Bioproducts Processing (Vol. 105). Institution of Chemical Engineers. https://doi.org/10.1016/j.fbp.2017.07.002

Xu, X., Lin, M., Zang, Q., & Shi, S. (2018). Solid state bioconversion of lignocellulosic residues by Inonotus obliquus for production of cellulolytic enzymes and saccharification. Bioresource Technology, 247, 88–95. https://doi.org/10.1016/j.biortech.2017.08.192

Yan, Y., Zhang, C., Lin, Q., Xiaohui, W., Cheng, B., Li, H., & Ren, J. (2018). Microwave-Assisted Oxalic Acid Pretreatment for the Xylose and Arabinose from Bagasse. Molecules, 23(862). https://doi.org/10.3390/molecules23040862

Yewale, T., Panchwagh, S., Rajagopalan, S., Dhamole, P. B., & Jain, R. (2016). Enhanced xylitol production using immobilized Candida tropicalis with non-detoxified corn cob hemicellulosic hydrolysate. 3 Biotech, 6(1), 75. https://doi.org/10.1007/s13205-016-0388-8


Refbacks

  • Saat ini tidak ada refbacks.