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Maize hybrids’ genetic variability based on qualitative and 
quantitative traits 
 
Abstract. Genetic variability was a prerequisite to doing a plant breeding program. A broad genetic 

variability allows plant breeders to select a desired genotype. This research aims to assess the maize 
hybrid's genetic variability based on qualitative and quantitative traits. This research was conducted 
in the Bone district, south Sulawesi, from November 2022 to March 2023. Fifteen maize hybrids were 
arranged in a randomized complete block design with three replications. The variables observed are 
qualitative and quantitative traits. Principal component (PCA) and cluster analyses assessed the 
genetic variability. The result indicated that based on a loading factor greater than 0.70, the qualitative 
traits such as intensity of green color, anthocyanin coloration of brace roots, length of lateral branch, 
intensity anthocyanin coloration of silk, and degree of zigzag displayed high variability. quantitative 
like days to anthesis, days to silk, leaf length, 1000 seeds weight, yield, ear diameter, number of row 
seeds per ear, ear height, ear length, and number of seeds per row also exhibit high variability. Cluster 
analysis shows a broad genetic variability on qualitative and quantitative traits demonstrated by 
Euclidean levels 6.68-10.93 and 3.43-5.08, respectively, and generated the dendrogram that divides 
genotypes into four main clusters for qualitative and five for quantitative traits. 
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Introduction 
 

Maize is one of the world's most essential crops. 
Maize kernels contain water (10.49±0.01%), ash 
(1.45±0.01%), protein (11.78±0.05%), fat 
(5.59±0.22%), crude fiber (6.84±0.07%), total 

carbohydrates (70.69±0.21%) and energy of 
(380.19±1.56 kcal/100g) based on dry weight 
(Murningsih et al., 2019; Rouf Shah et al., 2016). In 
addition to its use as human foodstuffs, livestock 
feed, chemical goods, and biofuels, maize is a 
source of life and prosperity for people in several 
countries. It is expected that, in terms of 
production and trade, maize—currently the most-
produced cereal—will surpass all other crops in 
the next ten years. The developing world's need for 
maize will double (Erenstein et al., 2022). Hence, 
maize yield must be enhanced to satisfy these 
demands. 

The enhancement of maize yield can be 
achieved by developing a novel high-yield maize 
cultivar. Novel high-yield maize cultivar 
development relies on genetic variability (Kotschi 
& Horneburg, 2018; Mengistu et al., 2020) Genetic 
variability is population variation among members 
(Litrico & Violle, 2015) When genetic variability is 
broad, plant breeders can combine the desired 
traits to develop novel varieties (Ahmar et al., 2020; 
Swarup et al., 2021). A comprehensive 
understanding of the germplasm's genetic 
variability is needed to recombinate traits correctly. 

Maize is a plant with board variability. 
Genetic variability can be estimated using 
qualitative and quantitative traits (Alemu et al., 
2020). Qualitative traits in maize are typically 
controlled by one or a few genes and exhibit 
discrete variations. These traits are often used to 
identify and classify maize varieties and hybrids. 
Qualitative traits provide easy markers for initial 
selection, while quantitative traits are complex and 
influenced by multiple genes, requiring advanced 
breeding techniques to achieve desired 
improvements. The range of trait variability in 
plant genetic materials is an excellent resource for 
plant breeders to develop and improve new 
varieties with desired traits (Darrudi et al., 2018). 
Because of this, breeding programs need to look at 
how different quantitative and qualitative traits are 
in genetic resources (Bhadmus et al., 2022; 
Bhandari et al., 2017; Wang et al., 2023).This 
information helps plant breeders develop optimal 

breeding strategies for breeding populations. 
Principal component analysis (PCA) and 

clustering analysis are commonly used to measure 

genetic variability. PCA reduces data 
dimensionality by transforming it into principal 
components, effectively estimating population 
variability based on traits. Studies on upland rice 
(Tuhina-Khatun et al., 2015), wild cassava 
(Karuniawan et al., 2017), sunflower (Dudhe et al., 
2020), and alfalfa (Sayed et al., 2022) have utilized 
PCA to determine genetic variability. In maize, 
PCA was used to identify key traits for breeding 
drought-resistant varieties (Esen et al., 2022) and 
identified the heritability and genetic variability 
traits like grain yield, kernels per ear, ear diameter, 
and thousand kernel weight (Matin et al., 2022; Rai 
et al., 2021; Yadesa et al., 2022). PCA with SNP data 
was used by Ayesiga et al., (2023) to identify 
genetically of distinct maize inbred lines. 
Clustering analysis groups genotypes based on 
similarities, visualizing these relationships in 
dendrograms for easier understanding. This 
research aims to assess genetic variability in maize 
hybrids using qualitative and quantitative traits, 
providing insights for developing maize breeding 
programs. 
 
 

Materials and Methods 
 
Research Site. This research was conducted 
between November 2022 and March 2023 in the 
Bone district of South Sulawesi. The location is 
situated at a latitude of 5.06607°S and a 
longitude of 120.2120°E. This site is dryland with 
Latosol soil at an altitude of 80 m above sea level 
and has a D2 climate type according to Oldeman 
& Frere, (1982) 

Plant Materials. Fifteen hybrids were used 
in this research. Thirteen conventional crosses 
maize, including TH 1- TH 13, and two 
commercial hybrids that have high yields and 
are widely adopted, NK 6172 and P 32, are used 
as check varieties (Table 1). 
Research Methods. This study used a 
Randomized Complete Block Design (RCBD) 
with three replications. Each plot had four rows, 
each 5 meters long. The spacing between rows 
was 0.70 m, and the spacing between individual 
maize plants within a row was 0.20 m. Initially, 
two seeds were sown per hill, but after two 
weeks, seedlings were thinned into one per hill 
to maintain a plant density of 71, 428 plants per 
hectare, allowing only one plant per stand to 
grow. Standard agricultural practices were 
applied for field maintenance, following 
recommended guidelines. 
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Table 1. The maize material used in this experiment. 

No Code  Origin  

1 TH 1 LG 1 X G 222 Tested variety 
2 TH 2 MP 2 X LG 1 Tested variety 
3 TH 3 LN 64 X LG 1 Tested variety 
4 TH 4 LN 86 X G 222 Tested variety 
5 TH 5 B 992 X MP 2 Tested variety 
6 TH 6 SB 35 X MP 4 Tested variety 
7 TH 7 RE 71 X G 222 Tested variety 
8 TH 8 IM 33 X RS 261 Tested variety 
9 TH 9 HF 22 X G 222 Tested variety 
10 TH 10 G 222 X MP 2 Tested variety 
11 TH 11 MT 20 X CL 14 Tested variety 
12 TH 12 LN 18 X HF 22 Tested variety 
13 TH 13 RS 122 X G 222 Tested variety 
14 NK 6172 NK 6172 Check Variety (commercial hybrid) 
15 P 32 P 32 Check Variety (commercial hybrid) 

 
Data Collections. The observed variables 

were divided into two types: qualitative and 
quantitative traits. The qualitative traits consisted 
of various traits, such intensity of green color 
(IGC), undulation of margin of blade (UMB), 
attitude of blade (AB), degree of zigzag (DZ), 
anthocyanin coloration of brace roots (ACBR), 
anthocyanin coloration of internodes (ACI), 
anthocyanin coloration of silks (ACSi), intensity 
anthocyanin coloration of silk (IACS), anthocyanin 
coloration of sheath (ACSh), anthocyanin 
coloration at base of glume (ACBG), anthocyanin 
coloration of glume excluding base (ACGEB), 
anthocyanin coloration of fresh anthers (ACFA), 
density of spikelet (DS), shape of tassel (ST), angle 
between main axis and lateral branches 
(ABMALB), number of primary lateral branches 
(NPLB), attitude of lateral branches (ALB), length 
of main axis above lowest lateral branch 
(LMAALLB), length of main axis above highest 
lateral branch (LMAAHLB), length of lateral 
branch (LLB), and shape of stem (SS). The 
quantitative traits included days to flowering, 
growth traits, yield components, and yield. Days to 
flowering consist of days to anthesis (DA) and 
days to silk (DS). Meanwhile, growth traits 
comprise plant height (PH), ear height (EH), ear 
diameter (SD), leaf length (LL), leaf width (LW), 
leaf angle (LA),. The yield component contains 
moisture content (MC), ear length (EL), ear 
diameter (ED), number of row seeds per ear 
(NRE), number of seeds per row (NSR), 1000 seeds 
weight (W 1000), shelling percentage (SP), fresh ear 
weight (FEW), yield (Y). 

The qualitative trait and days to flowering 
were observed 55 days after planting (DAP). The 

growth traits were observed at 85 DAP in ten plant 
samples. Harvest was done at the two middle rows 
of plants at 105 DAP, where a black layer at the 
base of kernel seeds appeared, indicating that the 
seeds were physiologically mature. Ears were 
collected from two middle rows of each plot. The 
yield component was observed at ten ear samples. 
The yield (Y) was corrected to 15% moisture and 
converted to t/ha. A digital scale was utilized to 
weigh each genotype yield. 

Data Analysis. The genetic variability was 
investigated using a multivariate analysis 
method with Principal Component Analysis, 
and the level of similarity between varieties was 
measured with cluster analysis. The data was 
processed using Euclidean distance and the 
standardized Unweighted Pair Group Method 
with Arithmetic Mean (UPGMA) method and 
shown as a dendrogram. A variable with a 
loading factor greater than 0.7 is identified as a 
variable that contributes to diversity (Jollife & 
Cadima, 2016). This analysis used Numerical 
Taxonomy and Multivariate System (NTSYS) 
software version 2.02 (Rohlf, 2000) and IBM 
SPSS Statistic version 23 (IBM, 2015). 
 
 

Results and Discussion 
 
The genetic variability of qualitative and 
quantitative traits in this study was determined 
using the PCA method. PCA is a multivariate 
technique that reduces the dimensionality of 
original variables that are highly correlated into 
mutually independent variables called Principal 
Components (PC). This method's maximum 
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number of principal components is equal to the 
number of original variables( Agustina & Waluyo, 
2017). Each PC represents the percentage of 
variance a given variable contributes to the overall 
variance (Aristya et al., 2017). The eigenvalue 
indicates the magnitude of the contribution of PC 
to the total variance. The first PC (PC1) has the 
highest eigenvalue and the most significant 
proportion of variance, while the subsequent PCs 
have lower eigenvalues than PC1 and explain the 
remaining variance (Pachauri et al., 2017). 

Many approaches to determining the 
number of PCs are necessary to explain the 
minimum total variability. This study 
determines the criteria for PCs with eigenvalues 
higher than one (Woolford, 2015). A loading 
factor expresses the correlation between the 
measured variables and the PC. The higher the 
loading factor's value, the closer the variable 
correlation is to the PC (Hefny et al., 2017). 
Variables that significantly contribute to 
variability are identified by a loading factor 
value exceeding 0.70 (Kaiser, 1974). 

Genetic variability based on the 
qualitative trait. The PCA identified six 
principal components with eigenvalues greater  

than one based on qualitative traits. These 
components collectively explain 83.07% of the 
total variability (Table 2). The identified PCA 
could explain almost all the variability in 
qualitative traits Only 16.93% of the variability 
in qualitative traits is not explained by these 
principal components. Huqe et al (2021) 
reported that the total diversity represented by a 
PC with an eigenvalue of more than one is 
sufficient to describe diversity in a population.  

PC 1 provides 23.70% of the total variability 
and has an eigenvalue of 4.98. This PC is 
composed of the intensity of green colour, 
anthocyanin coloration of brace roots, and length 
of lateral branch with loading factor values 0.74, 
0.80 and 0.74 respectively. The second PC (PC2) 
had an eigenvalue of 3.68, explaining 17.53% of the 
variability. It was strongly associated with one 
trait: the intensity of anthocyanin coloration of silk 
(loading factor= -0.72). The eigenvalue and 
contribution to the total variation of PC3 are 3.11 
and 14.79. The length of main axis above highest 
lateral branch with a loading factor -0.82 was a 
variable associated with PC 3. The degree of 
zigzag(loading fac tor=-0, 79) affects the variation 
at PC 4, which is 12.93%. The fifth PC (PC5) and 

 
Table 2. Eigenvalues, variation explained (%), cumulative variance (%), and loading factor of qualitative 
trait. 

 Trait and Component 
Principal Component  

1 2 3 4 5 6 

Intensity of green colour 0.74 0.38 0.29 0.32 -0.25 -0.01 
Undulation of margin of blade 0.32 0.30 -0.52 -0.32 0.24 0.49 
Attitude of blade -0.32 -0.54 -0.19 0.51 0.17 0.37 
Degree of zigzag 0.01 0.24 -0.17 -0.79 -0.05 0.16 
Anthocyanin coloration of brace roots. 0.80 0.12 0.14 0.33 -0.06 0.10 
Anthocyanin coloration of internodes 0.54 0.57 0.46 0.25 -0.01 0.15 
Anthocyanin coloration of silks -0.52 0.66 -0.17 -0.16 -0.31 -0.20 
Intensity anthocyanin coloration of silk 0.15 -0.72 0.21 0.34 0.33 0.23 
Anthocyanin coloration of sheath 0.35 0.39 0.69 -0.01 -0.23 0.02 
Anthocyanin coloration at base of glume 0.11 0.43 -0.17 -0.07 0.69 -0.27 
Anthocyanin coloration of glume excluding base -0.15 -0.41 0.62 0.05 0.26 -0.45 
Anthocyanin coloration of fresh anthers 0.64 0.30 0.10 -0.41 0.42 -0.15 
Density of spikelet -0.64 0.39 0.27 -0.11 0.43 0.10 
Shape of tassel -0.35 0.63 -0.03 0.42 -0.18 -0.02 
Angle between main axis and lateral branches -0.68 0.33 0.36 0.24 -0.02 0.15 
Number of primary lateral branches -0.63 0.44 0.17 -0.11 0.39 0.25 
Attitude of lateral branches -0.55 0.43 0.12 0.55 -0.02 0.16 
Length of main axis above lowest lateral branch -0.18 0.15 -0.64 0.54 0.16 -0.27 
Length of main axis above highest lateral branch 0.14 0.24 -0.82 0.35 -0.04 -0.22 
Length of lateral branch 0.74 0.24 -0.35 0.23 0.06 0.18 
Shape of stem 0.37 0.22 0.17 0.34 0.58 -0.08 

Eigen Values 4.98 3.68 3.11 2.71 1.86 1.11 
Percent of Variance (%) 23.70 17.53 14.79 12.93 8.85 5.27 
Cumulative percentage (%) 23.70 41.23 56.02 68.95 77.80 83.07 
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the sixth PC explained the variability 8.85% and 
5.27% respectively. No variable has an absolute 
loading factor value of more than 0.70 in PC5 and 
PC6. The variables at PC5 and PC6 account for a 
negligible portion of the variance, indicating these 
variables do not contribute to the variability in 
these PCs. 

 Of the four PCs that show traits that 
contributed to each PC, only PC1 shows positive 
values, while the other is negative. this means that 
traits that contributed to PC1 (the intensity of 
green colour, anthocyanin coloration of brace 
roots, and length of lateral branch) show the 
maximum contribution to the variability in PC1. 
Meanwhile, traits the intensity of anthocyanin 
coloration of silk, the length of main axis above 
highest lateral branch, and degree of zigzag 
contributed to PC2, PC3, and PC even though they 
have contributed to variability, their contribution is 
not optimal. Traits with positive loading factors 
contributed the most to variability, whereas the 
negative traits contributed but not optimally (Arif 
et al., 2023; Saleem et al., 2023). 

This study only shows the PCA biplot PC 1 
vs. PC 2. Previous research has revealed that PC 
1 and 2 have the highest variation and are 
considered enough to represent all variations 
(Lee et al., 2020; Ravikumar & Somashekar, 

2017). The distribution of genotypes across the 
vectors in the biplot diagram results in the 
formation of distinct genotype groups (Khan et 
al., 2022; Leite et al., 2018). Figure 1 shows the 
biplot PC1 vs. PC2 for qualitative traits. Han et 
al (2019) say that the point position in the biplot 
represented the degree of similarity. The lines 
that connect the traits to the biplot origin are 
called trait vectors. The angle between two trait 
vectors describes their correlation (Maulana et 
al., 2023). A closer angle shows a closer 
correlation. Two traits that show an acute angle 
mean have a positive correlation, an absolute 
angle has a negative correlation, and a right 
angle is not correlated.  

Figure 1 shows that based on the angle to 
the UMB trait, the ASCh trait has a strong 
positive correlation. The AB trait shows a weak 
negative correlation, and the ABMALB trait does 
not correlate. The ASCh trait exhibits a higher 
degree of similarity to the UMB trait than the 
ACI trait, even though their angles to the UMB 
trait are nearly identical. This similarity between 
the two traits is influenced by both the length of 
their vectors and the cosine of the angle between 
them. Notably, the ACI trait vector is longer 
than the ACSh trait vector despite having nearly 
the same angle. 

 

 
Figure 1. Biplot PCA (PC1 vs PC2) for qualitative traits. 



252  Jurnal Kultivasi Vol. 23 (3) December 2024 

  ISSN: 1412-4718, eISSN: 2581-138x 

Priyanto SB, Herawati, Suwarti, Rahman AA, Andayani NN, Fattah A, Azrai M. 2024. Maize hybrids’  
genetic variability based on qualitative and quantitative traits. Jurnal Kultivasi, 23(3): 247-257. 

Genetic variability based on the 
quantitative trait. The PCA generates the 
quantitative traits into five PCs with eigenvalues 
between 1.22 and 5.47 Rojas-Valverde et al. (2020), 
state that eigenvalues quantify the effectiveness of 
a factor in capturing the maximum variance from 
each analyzed variable. The generated PCs 
represent 84.46% of the total variation. In the other 
research, Prayudha et al., (2019) generated five PCs  
for morphology traits and four for agronomy traits 
in purple-fleshed sweet potato clones. These PCs 
account for 89.42% and 84.79% of the explained 
variation, respectively. 

In this research on quantitative traits, PC1 
covers 32.19% of the variability, influenced by 
traits such as days to anthesis, days to silk, leaf 
length, 1000 seed weight, and yield, with loading 
factor values of 0.90, 0.90, 0.77, -0.77, and -0.77, 
respectively. PC2, which explains 20.39% of the 
variation, is impacted by the number of row seeds 
per ear (loading factor = 0.99) and ear diameter 
(loading factor = 0.77). Ear height, with a loading 
factor of 0.75, influences PC3, covering 13.03% of 
the variability. PC4 explains 13.03% of the 
variability, driven by the trait ear length (loading 
factor = 0.81). Lastly, the number of seeds per row,  

with a loading factor of 0.71, affects PC5, 
contributing 7.16% to the total variation (Table 3). 
Although 1000 seed weight and yield affect 
variability, their contribution is not as high as that 
of the other traits. Moreover, the 1000 seed weight 
and yield have negative loading factors, while the 
others have positive ones. This information aligns 
with the findings of Gewers et al., (2021) that even 
though the negative loading factor shows a high 
contribution, the statistically significant number 
was fewer than the positive one. 

Figure 1 shows the PCA biplot PC 1 vs. PC 
2 for quantitative traits, and objectively presents 
the correlations between these traits. Consistent 
with the qualitative trait pattern. The Y vector 
exhibits a positive correlation with both FEW 
and W 1000, as evidenced by its acute angle to 
these vectors. In the meantime, the NSR and LA 
vectors and the Y vector form a straight line. 
With a cosine value of -1, the straight line shows 
that Y strongly correlates negatively with NSR 
and LA. On the other hand, SP and MC form a 
right angle with the Y vector. Thus, there is no 
correlation between these traits and Y.MC from 
a right angle with the Y vector. Thus, there is no 
correlation between these traits and Y.z

 

Table 3. Eigenvalues, Variation Explained (%), Cumulative Variance (%), and Loading Factor of 
Quantitative Trait. 

 Trait and Component 
Principal Component 

1 2 3 4 5 

Days to anthesis 0.90 -0.01 -0.07 0.28 -0.17 
Days to silk 0.90 0.03 0.02 0.25 -0.13 
Plant height -0.36 0.07 0.51 0.50 -0.35 
Ear height -0.31 0.50 0.75 -0.06 0.00 
Stem diameter 0.44 0.62 -0.44 0.17 0.03 
Leaf length 0.77 0.03 0.05 0.26 -0.33 
Leaf width 0.35 0.50 0.01 -0.48 0.29 
Leaf angle 0.59 -0.20 -0.45 0.22 0.39 
Moisture content 0.51 0.50 0.52 -0.12 -0.10 
Ear length 0.18 -0.36 0.04 0.81 0.14 
Ear diameter -0.12 0.90 -0.26 0.12 0.05 
Number of row seeds per ear 0.19 0.77 -0.40 0.11 -0.24 
Number of seeds per row 0.29 -0.11 0.42 0.26 0.71 
1000 seeds weight  -0.77 0.12 -0.47 0.01 0.06 
Shelling percentage -0.65 -0.48 -0.25 0.16 -0.25 
Fresh ear weight -0.57 0.61 0.10 0.45 0.16 
Yield -0.77 0.34 -0.07 0.47 0.13 

Eigen Values 5.47 3.47 2.21 1.99 1.22 
Percent of Variance (%) 32.19 20.39 13.03 11.70 7.16 
Cumulative percentage (%) 32.19 52.58 65.60 77.30 84.46 
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Figure 2. Biplot PCA (PC1 vs PC2) for quantitative traits. 

 

 
Figure 3. Dendrogram image based on the qualitative trait. 

 
Genetic variability based on the cluster 

analysis. A cluster analysis based on qualitative 
and quantitative traits was used to assess the 
genetic diversity of maize varieties. Based on these 
traits, the cluster analysis shown as a dendrogram 
showed that each variety was not as similar as the 
others (Zhang et al., 2017). This can be seen from 
the Euclidean Distance in  and Figure 4 of the 

dendrogram. Extensive relationships within 
genotypes are when the Euclidean distance 
between two genotypes is greater than 1, 
demonstrating the lack of a close relationship 
between the tested genotypes (Torres et al., 2019). 
The Euclidean value for the qualitative traits 
dendrogram ranges from 6.68 to 10.93; for 
quantitative traits, it ranges from 3.4 to 5.08. 
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Figure 4. Dendrogram image based on quantitative trait 

 

 
According to the Euclidean value of 

qualitative and quantitative traits, this study's 
maize varieties have a broad variability. 

 displays a dendrogram image based on 
qualitative trait. Four clusters of varieties of maize 
have been identified at Euclidean distance 9.87. 
Cluster I consists of TH 1 and TH 10. T Cluster II 
was divided into two subclusters. Five varieties 
constitute Cluster II A: TH 3, TH 6, TH 8, TH 7, 
and NK 6172. Furthermore, cluster II B involved 
TH 4, TH 13, P 32, and TH 9. Cluster III includes 
TH 2 and TH 5. The rest of the cluster (cluster IV) 
only contains one variety, i.e., TH 12. 

Dendrograms based on quantitative traits 
appear in Figure 4. This dendrogram classified  
the maize variety into five clusters at Euclidean 
distance 4.67. NK 6172, TH 1, and TH 4 varieties 
constituted cluster I. Cluster II contains TH 3 
and P 32. Cluster III is a cluster with the largest 
number of varieties (five varieties). The varieties 
are TH 2, TH 7, TH 12, TH 8, and TH 10. Cluster 
IV consisted of three varieties: TH 6, TH 11, and 
TH 9. There was one genotype, namely, TH 13, 
in cluster V. 

In genetic variability, genetic distance plays 
an essential part in plant breeding. Besides genetic 
variation, genetic distance also plays a vital role in 
plant breeding. By studying genetic distance, plant 
breeders can identify sources of trait variation for 
plant breeding (Juma et al., 2021; Ustari et al., 
2023). Genetic distance describes varieties' 
similarity degrees based on their traits. Two 
varieties with close genetic distance have a close 

relationship and high similarities, and vice versa. 
In dendrogram images, varieties with high 
similarity degrees are likely found in similar 
clusters (Metsalu & Vilo, 2015). Figure 1 shows that 
the highest level of similarity between varieties for 
qualitative traits was identified between TH 6 and 
TH 8 and between TH 7 and NK 6172. The 
varieties TH 6 and TH 11 have been identified as 
having the highest level of similarity in 
quantitative traits. The varieties TH 12 for 
qualitative qualities and TH 13 for quantitative 
traits exhibit the slightest similarity to the other 
varieties. 
 

 

Conclusion 
 

Based on loading factor values more than 0.70, the 
qualitative traits such as intensity of green colour, 
anthocyanin coloration of brace roots, length of 
lateral branch, intensity anthocyanin coloration of 
silk and degree of zigzag displayed high 
variability. Quantitative like days to anthesis, days 
to silk, leaf length, 1000 seeds weight, yield, ear 
diameter, number of row seeds per ear, ear height, 
ear length, and number of seeds per row also 
exhibit high variability. Cluster analysis shows a 
broad genetic variability on qualitative and 
quantitative traits demonstrated by Euclidean 
levels 6.68-10.93 and 3.43-5.08, respectively, and 
generated the dendrogram that divides genotypes 
into four main clusters for qualitative and five for 
quantitative traits.  
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