Respons fisiologis tanaman kentang terhadap jenis zat pengatur tumbuh pada berbagai kondisi cekaman kekeringan di dataran medium

Nita Yuniati, Jajang Sauman Hamdani, Mochamad Arief Soleh

Abstract


Sari Peningkatan suhu global akibat peningkatan konsentrasi CO2 di atmosfer sangat berpotensi terjadi cekaman kekeringan pada tanaman kentang. Fenomena ini dapat mempengaruhi proses fisiologis tanaman. Zat Pengatur Tumbuh (ZPT) asam salisilat dan paclobutrazol mampu memberikan perlindungan bagi tanaman terhadap cekaman kekeringan melalui serangkaian proses fisiologis seperti peningkatan aktivitas fotosintesis. Penelitian ini bertujuan untuk mengetahui interaksi antara ZPT dan cekaman kekeringan serta memperoleh jenis ZPT dan kondisi cekaman kekeringan yang masih mampu menghasilkan karakter fisiologis tanaman kentang terbaik di dataran medium. Percobaan bertempat di Kebun Percobaan Ciparanje, Jatinangor, pada ketinggian 685 m di atas permukaan laut. Rancangan percobaan yang digunakan adalah rancangan petak terbagi. Petak utama terdiri dari interval penyiraman 1, 4, 8, dan 12 hari, sedangkan anak petak terdiri atas tanpa ZPT, asam salisilat, paclobutrazol, serta kombinasi asam salisilat dan paclobutrazol. Setiap perlakuan diulang sebanyak 3 kali. Hasil penelitian menunjukkan bahwa tidak terdapat pengaruh interaksi antara jenis ZPT dengan cekaman kekeringan terhadap seluruh parameter fisiologis. Penambahan ZPT paclobutrazol mampu menghasilkan respons terbaik terhadap konduktansi stomata serta suhu kanopi. Sementara itu, tanaman kentang pada 9 MST masih mampu memberikan respons fluoresensi klorofil terbaik hingga interval penyiraman 4 hari.

Kata kunci: Kentang Cekaman kekeringan Asam salisilat Paclobutrazol

 

Abstract. The rising of CO2 concentration increases global temperature. This phenomenon potentially causes drought stress in potato plant and lead to interfere its physiological process. Plant growth regulator (PGR) such as salicylic acid and paclobutrazol are expected to protect the plant due to the drought stress through improving photosynthesis activity. This study aimed to understand the interaction between PGR and drought stress; and find out the types of PGR and drought stress condition which are able to provide the best physiological responses of potato plant in medium altitude. The experiment was conducted in Ciparanje Experimental Field, Jatinangor, at an altitude 685 m above sea level. Split plot design was used as the experimental design. The main plot was watering interval, consisted of 1, 4, 8, and 12 day; while the subplot was PGR treatment, consisted of non-PGR, salicylic acid, paclobutrazol, and the combination of salicylic acid and paclobutrazol. All of the treatments were replicated for 3 times. The results showed that interactions were not occurred between PGR and drought stress to all physiological parameters. The treatment of paclobutrazol exhibited stomatal conductance and canopy temperature. Meanwhile, the potato plant showed good responses on chlorophyll fluorescence 9 WAP until 4 days watering interval.

Keywords: Potato Drought stress Salicylic acid Paclobutrazol


Keywords


Kentang; Cekaman kekeringan; Asam salisilat; Paclobutrazol

References


Aliche, E. B., M. Oortwijn, T. P. J. M. Theeuwen, C. W. B. Bachem, R. G. F. Visser, and C. G. V. D. Linden. 2018. Drought response in gield grown potatoes and interactions bet-ween canopy growth and yield. Agri-cultural Water Management 206 : 20-30.

Anjorin, F. B., S. A. Adejumo, L. Agboola, and Y. D. Samuel. 2016. Proline, soluble sugar, leaf starch and relative water contents of four maize varieties in response to different watering regimes. Cercetari Agronomice in Moldova XLIX(3) : 51-62.

Arfan, M., H. R. Athar, and M. Ashraf. 2007. Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress?. Journal of Plant Physiology 164 : 685-694.

Bakundi, Y. M. and S. U. Yahaya. 2017. Mitigation of moisture stress in sweet pepper (Capsicum annuum L.) by foliar application of salicylic acid in Sudan Savanna Agro-Ecology, Nigeria. Journal of Dryland Agriculture 3(1) : 10-18.

Duaja, M. D. 2012. Analisis tumbuh umbi kentang (Solanum tuberosum L.) di dataran rendah. Jurnal Bioplantae (1)2 : 88-97.

Endler, A., S. Meyer, S. Schelbert, T. Schneider, W. Weschke, S. W. Peters, F. Keller, S. Baginsky, E. Martinoia, and U. G. Schmidt. 2006. Identification of a vacuolar sucrose transporter in barley and arabidopsis mesophyll cells by a tonoplast proteomic approach. Plant Physiology 141 : 196-207.

FAO. 2011. Food and Agricultural Organization of the United Nations Database. Rome.

Fu, J., B. Huang, and J. Fry. 2010. Osmotic potential, sucrose level, and activity of sucrose metabolic enzymes in tall fescue in response to deficit irrigation. J. Amer. Soc. Hort. Sci. 135(6) : 506-510.

Gimenez, C., M. Gallardo, and R. B. Thompson. 2005. Encyclopedia of Soil in The Environment. Elsevier Ltd. USA.

Guo, R., L. X. Shi, Y. Jiao, M. X. Li, X. L. Zhong, F. X. Gu, Q. Liu, X. Xia, and H. R. Li. 2018. Metabolic responses to drought-tolerant and drought-sensitive wheat genotype seedlings. AoB Plants 10(2) : 1-13.

Handayani, T., E. Sofiari, dan Kusmana. 2011. Karakterisasi morfologi klon kentang di dataran medium. Buletin Plasma Nutfah 17(2) : 116-121.

Hua, S., Y. Zhang, H. Yu, B. Lin, H. Ding, D. Zhang, Y. Ren, and Z. Fang. 2014. Paclobutrazol application effects on plant height, seed yield and carbohydrate metabolism in canola. International Journal of Agriculture & Biology 16(3) : 471-479.

Hui-Jie, Z., Z. Xue-Juan, M. Pei-Fang, W. Yue-Xia, H. Wei-Wei, L. Li-Hong, and Z. Yi-Dan. 2011. Effects of salicilyc acid on protein kinase activity and chloroplast D1 protein degradation in wheat leaves subjected to heat and high light stress. Acta Ecologica Sinica 31 : 259-263.

IPCC (Intergovermental Panel on Climate Change). 2007. Climate change 2007: Synthesis Report. https://www.ipcc.ch (Diakses pada tanggal 25 Januari 2020).

Kamran, M., S. Wennan, I. Ahmad, M. Xiangping, C. Wenwen, Z. Xudong, M. Siwei, A. Khan, H. Qinfang, and L. Tiening. 2018. Application of paclobutrazol affect maize grain yield by regulating root morphological and physiological characteristics under a semi-arid region. Scientific Reports 8(4818) : 1-15.

Khan, M. I. R., M. Fatma, T. S. Per, N. A. Anjum and N. A. Khan. 2015. Salicylic acid-induced abiotic stress tolerance and underlying mechanism in plants. Frontiers in Plant Science 6(462) : 1-11.

Mabvongwe, O., B. T. Manenji, M. Gwazane, and M. Chandiposha. 2016. The effect of paclobutrazol application time and variety on growth, yield, and quality of potato (Solanum tuberosum L.). Advances in Agriculture : 1-5.

Nazar, R., N. Iqbal, S. Syeed, and N. A. Khan. 2011. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J. Plant Physiol. 168 : 807-815.

Nazar, R., S. Umar, N. A. Khan, and O. Sareer. 2015. Salicylic acid supplementation improves photosynthesis and growth in mustard through changes in proline accumulation and ethylene formation under drought stress. South African Journal of Botany 98 : 85-94.

NOAA (National Oceanic and Atmospheric Administration). 2018. Trends in Atmos-pheric Carbon Dioxide. https://www.esrl. noaa.gov (Diakses tanggal 12 Januari 2018).

Nzokou, P., and P. Nikiema. 2008. The influence of three plant growth regulators on susceptibility to cold injury following warm winter spells in fraser fir [Abies fraseri (Pursh) Poir] and colorado blue spruce (Picea pungens). HortScience 43(3) : 742-746.

Pal, S., J. Zhao, A. Khan, N. S. Yadav, A. Batushansky, S. Barak. B. Rewald, A. Fait, N. Lazarovitch, and S. Rachmilevitch. 2016. Paclobutrazol induces tolerance in tomato to deficit irrigation through diversified effects on plant morphology, physiology, and metabolism. Nature (6)39321 : 1-13.

Puteh, A. B., A. A. Saragih, M. R. Ismail, and M. M. A. Mondal. 2013. Chlorophyll fluorescence parameters of cultivated (Oryza sativa L. ssp indica) and weedy rice (Oryza sativa L. var. nivara) genotypes under water stress. Australian Journal of Crop Science 7(9) : 1277-1283.

Rebetzke, G. J., A. R. Rattey, G. D. Farquhar, R. A. Richards, and A. G. Condon. 2013. Genomic regions for canopy temperature and their genetic association with stomatal conductance and grain yield in wheat. Functional Plant Biology 40(1) : 14-33.

Romero, A. P., A. Alarcon, R. I. Valbuena, and C. H. Galeano. 2017. Physiological assessment of water stress in potato using spectral information. Frontiers in Plant Science 8(1608) : 1-13

Rosa, M., C. Prado, G. Podazza, R. Interdonato, J. A. Gonzales, M. Hilal, and F. E. Prado. 2009. Soluble sugars – metabolism, sensing and abiotic stress. Plant Signaling & Behaviour 4(5) : 388-393.

Sinha, R., V. Irulappan, B. Mohan-Raju, A. Suganthi, and M. Senthil-Kumar. 2019. Impact of drought stress on simultaneously occurring pathogen infection in field-grown chickpea. Scientific Reports 9(5577) : 1-15.

Soumya, P. R., P. Kumar, and M. Pal. 2017. Paclobutrazol : a novel plant growth regulator and multi-stress ameliorant. Ind J

Plant Physiol 22(3) : 267-278.

Swann, A. L. S., F. M. Hoffman, C. D. Koven, and J. T. Raderson. 2016. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. PNAS 113(36) : 10019-10024.

Taiz, L. and E. Zeiger. 2002. Plant Physiology 3rd Edition. Sinauer Associates. Sunderland, USA.

Wasaya, A., X. Zhang, Q. Fang, and Z. Yan. 2018. Root phenotyping for drought tolerance : a review. Journal Agronomy 8(241) : 1-19.

Xia, X., Y. Tang, M. Wei, and D. Zhao. 2018. Effect of paclobutrazol application on plant photosynthetic performance and leaf greenness of herbaceous peony. Horticulturae 4(5) : 1-12.

Yordanov, I., V. Velikova, and T. Tsonev. 2003. Plant responses to drought and stress tolerance. Bulg. J. Plant Physiol Issue 2003: 187-206.

Zlatev, Z. 2013. Drought-induced changes and recovery of photosynthesis in two bean cultivars (Phaseolus vulgaris L.). Emir. J. Food Agric. 25(12) : 1014-1023.

________. 2014. Drought-induced changes in chlorophyll fluorescence of young wheat plants. Biotechnology & Biotechnological Equipment 23(1) : 438-4




DOI: https://doi.org/10.24198/kultivasi.v19i1.24972

Refbacks

  • There are currently no refbacks.




Jurnal Kultivasi Indexed by:

       width=    

 

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


View Jurnal Kultivasi Stat